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ABSTRACT

Understanding the evolution of the solar system, as well as its current volatile

content, requires knowledge of the initial conditions present in the solar nebula. As some

of the first objects to accrete in the solar nebula, cometary nuclei are among the most

primitive remnants of solar system formation, and their present-day volatile composition

likely reflects the composition and conditions where (and when) they formed. As such, the

volatile compositions of cometary nuclei may serve as "fossils" of solar system formation.

High-resolution near-infrared spectroscopy offers a valuable tool for sampling the primary

volatile (i.e., ices subliming directly from the nucleus) composition of comets via analysis

of fluorescence emission in cometary comae. Sampling fluorescence emission from a suite

of primary volatiles has become possible from state-of-the-art ground-based observatories.

An overarching goal of comet volatile composition studies is determining whether

comets can be classified according to their volatile content and what this reveals about

the history of the early solar system. Early work produced encouraging results, but recent

work has left pressing questions regarding whether a compositional taxonomy based on

near-infrared measurements is feasible, as well as how to place such measurements into a

meaningful context. These include questions such as: Are observed systematic composi-

tional differences between ecliptic comets and Oort cloud comets the result of evolutionary

effects or reflective of formative conditions? Is temporal variability in coma composition

a common phenomenon, and if so, how can present-day measurements be related to natal

solar system conditions? This work examines these questions in the context of near-infrared

measurements of an Oort cloud comet, a Jupiter-family comet, and an ecliptic comet. The

interplay between evolutionary effects, formative conditions, and temporal variability is

examined in the context of the evolving composition-based taxonomy and the interpretation

of the results of comet composition studies.
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1. INTRODUCTION

1.1. THE FORMATION OF THE SOLAR SYSTEM IN A NUTSHELL

The solar system originated as a dense fragment of a giant molecular cloud. These

giant molecular clouds are nurseries of stellar formation. Variations in local density lead

to the formation of dense clumps and fragments in the clouds, which eventually undergo

gravitational collapse. At the center of the collapsing fragment, a star is born when the local

density becomes sufficiently high to ignite thermonuclear fusion, while the outer material

of the fragment flattens out into a disk of gas and dust surrounding the young star. Over

the next several million years, all of the planets, asteroids, moons, and comets of a stellar

system will accrete from this “protoplanetary disk” of gas and dust. The protoplanetary

disk from which the solar system formed is known as the solar (or protosolar) nebula.

Understanding a range of events and processes in the history and evolution of the

solar system, from the formation of the planets to the source(s) of water and organic matter

on Earth, requires knowledge of the initial composition and conditions present in the solar

nebula. As small (up to tens of km) bodies of ice and dust, comets are some of the smallest

objects in the solar system and were among the first to accrete out of the solar nebula.

Lacking a known mechanism for efficient self-heating owing to their small sizes, their

present-day volatile composition likely reflects the composition and conditions where (and

when) they formed.

1.2. COMETS: ORIGINS AND PRESENT-DAY RESERVOIRS

The majority of comets that become available for remote sensing can be placed

into one of two dynamical groups: 1) Ecliptic comets, such as the Jupiter-family comets

(JFCs) and 2P/Encke (one of the subjects of this work), which originate principally from
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the scattered Kuiper disk and have small orbital inclinations, and 2) nearly isotropic Oort

cloud comets (OCCs), which originate from the outer reaches of the solar system and have

random orbital inclinations.

The dynamical reservoir of a given comet can be identified using the Jupiter Tis-

serand parameter, TJ, which measures Jupiter’s gravitational influence on a comet’s orbital

path. Comets with TJ < 2 originate from the Oort cloud, a spherical distribution of comets

in the outer solar system extending up to tens of thousands of AU, and include dynamically

new comets which are entering the inner solar system for the first time. Oort cloud comets

have long periods (hundreds to hundreds of thousands of years, or more), and are often

ejected from the solar system by Jupiter following a passage through the inner solar system.

Comets with 2 < TJ < 3 are the JFCs, which reside in the Kuiper disk beyond the orbit

of Neptune. These comets have considerably shorter periods than Oort cloud comets, on

the order of several to tens of years, and as such offer the opportunity to study the effects

of multiple close perihelion passages on volatile composition. Comets with TJ > 3 are

subdivided into two groups depending on the semi-major axis of their orbit: comets with

a semi-major axis interior to that of Jupiter are Encke-type comets, whereas those with a

semi-major axis exterior to that of Jupiter and interior to Neptune are Chiron-type comets.

The term “ecliptic comets” is also used interchangeably to describe the JFCs, Encke-type

comets, or Chiron-type comets, as they lie in or near the plane of the solar system, known

as the ecliptic plane.

Historically, OCCs were thought to form in-situ at heliocentric distances (Rh) be-

tween 5-30 AU before being scattered to the Oort cloud, whereas ecliptic comets formed

separately at even larger heliocentric distances. However, the detection of crystalline sil-

icates in some comets, e.g., 1P/Halley (Bregman et al., 1987), 9P/Tempel 1 (via remote

observations of material ejected during the Deep Impact mission (Harker et al., 2005)),

and 81P/Wild 2 (in grains returned by the Stardust mission (Zolensky et al., 2006)) imply

that material in their nuclei was processed at small Rh and mixed over ranges of distances
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in the solar nebula. Additionally dynamical modeling (e.g., Gomes et al. (2005); Levison

et al. (2011); Morbidelli et al. (2005)) suggests that comets were emplaced in their current

dynamical reservoirs (either the Oort cloud or the Kuiper disk) early in the history of the

solar system by gravitational scattering due to the migration of the giant planets. Taken

together, this evidence suggests that comet formation was instead a more “spatially mixed”

process.

Since their emplacement in the Oort cloud or the Kuiper disk, the interior com-

positions of cometary nuclei have remained (at least to a large degree) unchanged. Most

processes that may alter the properties of the nucleus during its (∼ 4.5 billion years) resi-

dence in the Oort cloud (or the Kuiper disk) are expected to affect a thin (a few meters deep)

layer near the surface (Stern, 2003). This layer is lost during a typical passage through the

inner solar system.

1.3. TAXONOMIES OF COMETS

Classifying comets according to their present day dynamical reservoir is useful for

planning observations. However, given the complex “spatially mixed” process of comet

formation and the scattering processes which placed comets in their current orbits, the

volatile compositions of cometary nuclei may represent widely varying (or at the other

extreme, largely overlapping) formation regions in the solar nebula, which have no ties to

a particular comet’s present day orbital characteristics. In terms of tying the present day

volatile composition of comets to formative regions and conditions in the solar nebula, a

taxonomy based on the volatile composition of comets is more informative.

1.3.1. Compositional Taxonomies of Comets asMeasured at Optical and Radio

Wavelengths. Comets have been observed and characterized at optical wavelengths for over

thirty years, leading to large databases of photometric and spectroscopic observations and

the development of a taxonomy based on composition (e.g., A’Hearn et al. (1995); Cochran

et al. (2012) and references therein). Fragment species (e.g., CN, C2, C3, CS, NH, OH)
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formed by photodissociation of larger molecules in the coma have spectroscopic features

at optical wavelengths. Based on their fragment species composition, comets are broadly

classified as either “normal” or “carbon-chain depleted”, with as many as seven distinct

taxonomic subgroupings (Cochran et al., 2015; Schleicher and Bair, 2014). However,

relating mixing ratios of fragment species to those of their parents is difficult due to their

complicated lineage (multiple possible parents, including dust grains).

Primary volatiles, including complex molecules such as ethylene glycol, emit in

the radio via rotational transitions. However, there is no agreement on the existence of

taxonomic classes based on composition as measured at radio wavelengths (Crovisier et al.,

2009; Mumma and Charnley, 2011).

1.3.2. Compositional Taxonomies of Comets as Measured at Near Infrared

Wavelengths. A suite of primary volatiles (i.e., ices subliming directly from the nucleus)

emit in the near-infrared via ro-vibrational transitions. Using state-of-the-art near-infrared

spectrographs such as CSHELL and iSHELL at the 3 m NASA Infrared Telescope Facility

and NIRSPEC at the 10 m W. M. Keck Observatory, fundamental transitions of OCS, CO,

H2CO, CH3OH, C2H6, CH4, HCN, C2H2, and NH3, and hot band transitions of H2O can

be sampled from the ground in sufficiently bright comets. The outputs of these studies

include best-fit rotational temperatures, molecular production rates, molecular abundances

(“mixing ratios”) relative to H2O (the dominant ice in most comets studied), and maps of

molecular column density along the slit, known as emission spatial profiles.

Figure 1.1 shows spatial profiles of emissions for hydrocarbon species (C2H6, C2H2,

CH4), H2O, and dust grains in OCC 153P/Ikeya-Zhang. These spatial profiles show that

the emission intensity of each volatile peaks at the position of the nucleus and falls off with

increasing nucleocentric distance (ρ) as 1/ρ, consistent with ices subliming directly from

the nucleus with constant outflow velocity followed by adiabatic expansion. This suggests

that they are indeed “primary” volatiles. Thus, the core hypothesis in the interpretation

of the results of these near-infrared measurements is that once sublimation of H2O, the
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least volatile ice in comets, is fully activated, the mixing ratios of primary volatiles in

comet comae should remain relatively constant and reflect the native composition of the

nucleus (assuming compositional homogeneity). Comets observed to date in the near-

infrared suggest that this is true in general, although some primary volatiles (NH3, H2CO,

and C2H2) and fragment species (CN and NH2) show a trend towards enhanced production

at heliocentric distance (Rh) < 0.8 AU (possibly due to release from grains; e.g., see

Dello Russo et al. (2016a)).

The matter of classifying comets according to their primary volatile composition

has proven to be a complex undertaking. Early near-infrared spectroscopic studies of the

primary volatile compositions of comets 1P/Halley (Mumma et al., 1986), C/1996 B2

(Hyakutake) (Dello Russo et al., 2002b; DiSanti et al., 2003; Magee-Sauer et al., 2002b;

Mumma et al., 1996) and C/1995 O1 (Hale-Bopp) (Dello Russo et al., 2001, 2000; DiSanti

et al., 2001; Magee-Sauer et al., 1999) revealed that they are chemically similar objects

(Mumma et al., 2003). Subsequent observations of comet D/1999 S4 (LINEAR) prior to

its complete disruption (Mumma et al., 2001b) and of the split comet 73P/Schwassman-

Wachmann 3B (Dello Russo et al., 2007; Villanueva et al., 2006) showed two comets that

were highly depleted in virtually all trace primary volatiles relative to water. At the other

extreme, comets C/2001 A2 (LINEAR) (Magee-Sauer et al., 2008) and later C/2007 W1

(Boattini) (Villanueva et al., 2011a) were enriched in the sampled trace primary volatiles.

These results formed the basis for a proposed three-tiered taxonomy based on primary

volatile abundance ratios, with comets classified as organics-enriched, organics-normal, or

organics-depleted (e.g., Mumma and Charnley (2011) and references therein).

However, recent work has suggested that the three-fold classification scheme is in-

complete and more complex (see Dello Russo et al. (2016a) for a recent review of comet

taxonomies based on near-infrared spectroscopy). For example, the primary volatile com-

positions of comets 8P/Tuttle, C/2007 N3 (Lulin), and 2P/Encke (Bonev et al., 2008b; Gibb

et al., 2012; Radeva et al., 2013; Roth et al., 2018) show no systematic enrichment, deple-
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Figure 1.1. Spatial profiles of emissions in 153P/Ikeya-Zhang for C2H6 (blue), C2H2
(green), CH4 (purple), H2O (red), and dust (black, dashed) on UT 2002 March 21. The slit
was oriented East-West, and the direction of the Sun relative to the slit is indicated.

tion, or similarity to the mean. Among these three comets (2P/Encke is a special case, see

Section 3), CH3OH may be seen as a “smoking gun” in that it is “overabundant” compared

to other primary volatiles. Specifically, these three comets all had high CH3OH abundances

while being depleted in certain other molecules, for example C2H2, and “normal” in others,

such as C2H6. This suggests that the chemical diversity among comets is more complex

than the simple organics-enriched, organics-normal, and organics-depleted framework.
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1.4. THE IMPACT OF EVOLUTIONARY EFFECTS VS. NATAL CONDITIONS
ON COMET VOLATILE COMPOSITIONS

Although forming a comprehensive comet taxonomy based on composition as re-

vealed at near-infrared wavelengths has proven elusive, results from all wavelengths have

shown that considerable compositional diversity exists in the comet population. In par-

ticular, measured Jupiter-family comets are on average depleted in their primary volatiles

relative to Oort cloud comets. If these systematic compositional differences are indicative

of natal conditions, they would imply that JFCs formed in a compositionally distinct region

in the solar nebula from that where OCCs formed.

However, there is some question of how repeated close encounters with the Sun

affect volatile composition, and evolutionary effects over the ∼4.5 billion year lifetime of

comets must be considered. Although most processes that may alter the properties of the

nucleus are expected to affect a thin (at most a few meters deep) layer near the surface over

the course of a typical perihelion passage, an ecliptic comet experiencing many perihelion

passages, particularly at small Rh, may (possibly) suffer considerable processing compared

to a dynamically new Oort cloud comet entering the inner solar system for the first time.

Understanding potential evolutionary effects, including the systematic differences between

ecliptic comets and OCCs, is critical to interpreting the clues of solar system formation that

are imprinted in the ices of cometary nuclei, as well as to placing the results of present day

observations into a meaningful context.

Interpreting the results of volatile composition studies also requires overcoming

observational biases. Thus far, near-infrared studies of primary volatile composition have

largely been “snapshots” – observations over a single apparition and at most a small range of

Rh (often near ∼ 1 AU) for comets that, in many cases, will make a single perihelion passage

in a human lifetime. Although several comets have been observed in the near-infrared

at small Rh (< 0.8 AU, e.g. DiSanti et al. (2017, 2016, 2003); Gibb et al. (2003)) and
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large Rh (> 2 AU, e.g. Bonev et al. (2017); Brooke et al. (2003); Kawakita et al. (2014);

Magee-Sauer et al. (1999); Paganini et al. (2012)), to date no comets have had a complete

primary volatile inventory characterized over multiple apparitions.

Additionally, certain primary volatiles (specifically, C2H2, OCS, CO, and CH4) are

underrepresented in studies of comets as a whole, and in particular in studies of eclip-

tic comets. In the case of C2H2 and OCS, this has been due largely to limitations in

sensitivity and lack of spectral coverage, respectively. For CH4 and CO, their fundamen-

tal ro-vibrational bands are heavily populated in Earth’s atmosphere, resulting in highly

opaque telluric counterparts and requiring that comets have sufficiently large geocentric

velocity (∆dot) to Doppler-shift corresponding cometary emissions to regions of adequate

atmospheric transmittance. To compensate for their low brightness, most observations of

ecliptic comets take place near closest passage to Earth, coinciding with small ∆dot, and

so precluding measurement of CO and CH4. This has resulted in a significant paucity of

detections of CO and CH4 in ecliptic comets. Owing to their status as “hypervolatiles”,

cometary abundances of CO and CH4 can provide unique insights into the processing in

the early solar system (Dello Russo et al., 2016a). Improving the number of secure mea-

surements of these species in ecliptic comets is one of the primary goals of this work (see

Sections 3 and 4 for more details).

1.5. COMPOSITIONAL HETEROGENEITY AND VARIABILITY IN COMETS

Although near-infrared measurements of the volatile composition of comets to date

suggest that mixing ratios of trace species remain relatively constant once sublimation

of H2O is fully activated, this is not a hard and fast rule. A’Hearn et al. (1985) found

that OH (and by proxy, water) production in the ecliptic comet 2P/Encke was symmetric

about perihelion, whereas C2, C3, and CN production was much lower post-perihelion vs.

pre-perihelion.
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Non-uniform volatile mixing ratios have been observed in other comets, including

during the Rosetta mission to JFC 67P/Churyumov-Gerasimenko. At comet 67P/C-G,

Rosetta found that mixing ratios of CO and CO2 in the coma varied due to seasonal effects

on the nucleus (Hässig et al., 2015). In these seasonal effects, different portions of the

nucleus receive seasonal illumination during different portions of an orbit due to the comet’s

orientation with respect to the Sun, leading to distinct sources on the nucleus dominating

outgassing at different times. Furthermore, variation in volatile mixing ratios was found

on smaller time scales, with some volatiles (such as CH4) showing diurnal variations that

differed from those for other volatiles, such as CO and C2H6 (Bockelée-Morvan et al., 2016;

Fink et al., 2016; Luspay-Kuti et al., 2015).

Additionally, non-uniform mixing ratios of CO/H2O were observed in OCC C/2009

P1 (Garradd) by both ground-based studies (McKay et al., 2015) and spaced-based studies

from the High Resolution Instrument Infrared Spectrometer aboard the Deep Impact Flyby

spacecraft (Feaga et al., 2014). In C/2009 P1 (Garradd), H2O production rates traced the

predicted heliocentric dependence, rising and then falling near perihelion. However, CO

production increased monotonically throughout the apparition, continuing to rise long after

perihelion, perhaps due to seasonal effects on the nucleus.

There is also evidence that some primary volatiles (NH3, H2CO, C2H2) display

enhanced production at small Rh (<∼ 0.8 AU), perhaps due to grain sources (Dello Russo

et al., 2016a). Furthermore, in the sun-grazing comet D/2012 S1 (ISON), HCN,NH3, C2H2,

and H2CO showed increased abundances at small Rh (DiSanti et al., 2016). However, as

noted earlier, measurements of a given comet across a large range of Rh during a particular

apparition are sparse, leaving the matter unresolved. Determining to what extent these

phenomena occur in the comet population is crucial to interpreting the results of volatile

composition studies and placing them in a meaningful context.
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1.6. OVERVIEW OF OBSERVATIONS AND SPECTROSCOPIC DATA REDUC-
TION

This section will provide an overview of the the techniques used for the near-infrared

spectroscopic observations reported in this work, as well as the procedures used for data

reduction and analysis.

1.6.1. Observations. To address these pressing matters in cometary science, this

study includes near-infrared spectroscopic measurements of the primary volatile com-

positions of three comets: the dynamically new OCC C/2012 K1 (PanSTARRS), the

JFC 21P/Giacobini-Zinner, and the ecliptic comet 2P/Encke (the prototypical Encke-type

comet). In all cases, these measurements were acquired with state-of-the-art near-infrared

spectrographs at professional ground-based observatories. Measurements of C/2012 K1

(PanSTARRS) were obtained with NIRSPEC (McLean et al., 1998) at the 10 mW.M. Keck

Observatory. Measurements of comets 2P/Encke and 21P/Giacobini-Zinner were acquired

with the newly-commissioned iSHELL spectrograph (Rayner et al., 2012, 2016) at the 3 m

NASA Infrared Telescope Facility.

Although there are notable differences in the spectrographs, such as nominal resolv-

ing power, array size, and spectral grasp, the observational techniques used to acquire data,

as well as the data reduction algorithms, all operate on the same basic principles and are

fundamentally similar for both instruments. A brief overview of these is given here, and a

comprehensive description is provided in Appendix A.

Settings for both spectrographs were chosen so as to fully and efficiently sample

a suite of molecular abundances. Observations were performed using a standard ABBA

nod pattern, with A and B beams symmetrically placed about the midpoint of the slit and

separated by half its length (on-chip nodding). In the case of 21P/Giacobini-Zinner, some

of the data were acquired using off-chip nodding (see Section 4), in which the A beam is

placed at the midpoint of the slit whereas the B beam is placed perpendicular to the slit.

Combining spectra of the nodded beams as A-B-B+A cancelled emissions from thermal
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background, instrumental biases, and “sky” emission (lines and continuum) to second order.

The data were dark subtracted, flat-fielded, and cleaned of cosmic ray hits and “hot” (high

dark current) pixels. Flux calibration was performed using appropriately placed bright IR

flux standards on each date.

1.6.2. Data Reduction. The data reduction procedures used are described exten-

sively in the refereed literature (Bonev, 2005; DiSanti et al., 2006, 2014; Radeva et al.,

2010; Villanueva et al., 2009). Their application to unique aspects of iSHELL spectra

(in the case of comets 2P/Encke and 21P/Giacobini-Zinner) is detailed in §3.2 of DiSanti

et al. (2017). Contributions from continuum and gaseous emissions were determined in

the comet spectra as previously described (e.g. DiSanti et al. (2016)). This procedure is

illustrated in Figure 1.2. The fully resolved transmittance function was convolved to the

resolving power of the data (∼2 x 104 for NIRSPEC, ∼4 x 104 for iSHELL) and scaled to

the level of the comet continuum. The modeled continuum was then subtracted to isolate

cometary emission lines.

Nucleocentric (or “nucleus-centered”) production rates (QNC) were determined us-

ing a well-documented formalism (Bonev, 2005; Dello Russo et al., 1998; DiSanti et al.,

2001; Villanueva et al., 2011a); see Section 3.2.2 of DiSanti et al. (2016) for further details.

The nucleocentric production rates were multiplied by an appropriate growth factor (GF),

which was determined using the well-establishedQ-curvemethodology (e.g. Bonev (2005);

DiSanti et al. (2001); Gibb et al. (2012)) to establish a total (or global) production rate,

Q. This GF corrects for atmospheric seeing, which suppresses signal along lines of sight

passing close to the nucleus due to the use of a narrow slit, as well as potential drift of the

comet during an exposure sequence.

1.6.3. Molecular Fluorescence Analysis. Synthetic models of fluorescence emis-

sion for each targeted species were compared to observed line intensities, after correcting

each modeled line intensity (g-factor) for the monochromatic atmospheric transmittance at

its Doppler-shifted wavelength (according to the geocentric velocity of the comet at the time
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of the observations). The g-factors used in synthetic fluorescence emission models in this

study were generated with quantummechanical models developed for each molecule. These

models include CH4 (Gibb et al., 2003), C2H6 (Villanueva et al., 2011b), H2O (Villanueva

et al., 2012b), CH3OH (DiSanti et al., 2013; Villanueva et al., 2012a), HCN (Lippi et al.,

2013; Villanueva et al., 2011a), H2CO (DiSanti et al., 2006), OH* (Bonev et al., 2006),

C2H2 (Villanueva et al., 2011a), CO (Paganini et al., 2013b), and NH3 (Villanueva et al.,

2013). A Levenberg-Marquardt nonlinear minimization technique (Villanueva et al., 2008)
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was used to fit fluorescence emission from all species simultaneously in each echelle order,

allowing for high-precision results, even in spectrally crowded regions containing many

spectral lines within a single instrumental resolution element. Production rates for each

sampled species were determined from the appropriate fluorescence model at the rotational

temperature of each molecule.

1.6.4. Determination of Rotational Temperature. Rotational temperatures were

determined using correlation and excitation analyses as described in Bonev (2005); Bonev

et al. (2008a); DiSanti et al. (2006); Villanueva et al. (2008). In general, well-constrained

rotational temperatures can be determined for individual species with intrinsically bright

lines and for which a broad range of excitation energies is sampled. These conditions were

satisfied for H2O by at least one setting in each data set.
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2. THE COMPOSITION OF COMET C/2012 K1 (PANSTARRS) AND THE
DISTRIBUTION OF PRIMARY VOLATILE ABUNDANCES AMONG

COMETS

2.1. COMET C/2012 K1 (PANSTARRS)

Comet C/2012 K1 (PanSTARRS) (hereafter K1) was a dynamically new Oort cloud

comet on its first journey into the inner solar system (Nakano, 2013). K1 reached perihelion

(1.05 AU) on 2014 August 27 and was closest to Earth (0.95 AU) on 2014 October 31. On

2014 May 22 and 24, K1 was observed with the high-resolution (λ/∆λ ≈ 25,000), near-

infrared, long-slit echelle spectrograph NIRSPEC at the 10 m W. M. Keck Observatory

(McLean et al., 1998) to characterize its volatile composition.

The observing log is shown in Table 2.1. Seeing improved from ∼ 0.5′′ to ∼ 0.2′′

over the course of the night on May 22, and was stable at ∼ 0.5′′ on May 24. The column

burden of atmospheric water vapor (expressed in precipitablemillimeters) retrieved in fitting

synthetic telluric absorption models to flux standard star continua was 2.9 on May 22, and

2.2 on May 24.

Table 2.1. C/2012 K1 (PanSTARRS) observing log and H2O production rates.

Date NIRSPEC UT Rh ∆ ∆dot T int Q(H2O)
(2014) Setting (AU) (AU) (km s-1) (minutes) (1028 s-1)
5/21 KL1 6:20 – 7:10 1.857 1.557 14.98 32 4.46 ± 0.27

KL2 7:18 – 8:46 1.857 1.557 15.10 52 4.39 ± 0.31
5/22 KL1 5:48 – 6:29 1.834 1.574 16.02 28 5.95 ± 0.29

MWA 6:39 – 8:37 1.833 1.575 16.14 28 3.61 ± 1.07
KL2 8:49 – 9:06 1.832 1.576 16.26 16 3.53 ± 0.68

1 Rh, ∆, and ∆dot are heliocentric distance, geocentric distance, and geocentric velocity,
respectively, of C/2012 K1 (PanSTARRS). T int is total integration time on source, and
Q(H2O) is the global water production rate.
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2.2. RESULTS

Production rates were determined for six primary volatiles (H2O, HCN, CH4,

CH3OH, C2H6, and CO), and stringent upper limits were obtained for three others (C2H2,

NH3, and H2CO) in K1. Growth factors (defined as GF = Qglobal/QNC, where QNC is the

nucleocentric production rate – see Section 1.6.2 and Appendix A.4.3, A.4.4) were deter-

mined for both the gas and the dust when the signal-to-noise ratio (S/N) was sufficiently

high (i.e., only for water and ethane). These two species had similar spatial profiles (see

Figure 2.1) and therefore, since their photodissociation lifetimes are comparable, provided

similar growth factors. Table 2.2 shows rotational temperatures, production rates, and

mixing ratios for all sampled species in K1 on each date.

For these observations, the most robust rotational temperature (T rot = 42 ± 7 K)

was found for H2O in order 26 of the KL2 setting on May 22. A rotational temperature for

HCN (43+11
−10 K) was also retrieved, in agreement with that for water. In general, rotational

temperatures agree for different primary species measured at infrared wavelengths (see for

example Gibb et al. (2012) and references therein; also see §3.2.1 of DiSanti et al. (2016)),

supporting this approach. The rotational temperature derived for H2Owas therefore applied

to species for which the rotational temperature could not be well-constrained.

The H2O rotational temperature was poorly constrained on May 24, owing to poor

S/N (less on-source integration time, see Table 2.1) in orders with temperature-sensitive

water lines. Therefore, the May 22 H2O rotational temperature was adopted in determining

production rates and abundances on May 24. Additionally the water production rate in the

KL1 setting on May 24 was significantly higher than that found for the KL2 setting (see

Table 2.2), as well as the water production rate on May 22. However, production rates for

all other traces volatiles in the KL1 setting on May 24 agree within uncertainty with those

on May 22. McKay et al. (2016) reported a water production rate of 4.35(0.44) x 1028 s-1
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normalized to the mean intensity of the central three pixels.

on May 24, consistent with the Q(H2O) from May 22 reported here. Such variations are

not unknown in comet observations and may be due to short-term variability. Spectra and

best-fit fluorescence models are shown in Figures 2.2-2.6.
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Table 2.2. Volatile composition of C/2012 K1 (PanSTARRS).

Setting Molecule T rot
(1) (K) Growth Factor(2) Q(3) (1026 mol s-1) Qx/QH2O (%)

2014 May 22, Rh = 1.857 AU, ∆ = 1.557 AU, ∆dot = 15 km s-1
KL2 H2O 42 ± 7 1.6 ± 0.2(4) 439 ± 31 100

H2CO (42) (1.6) <0.61 (3σ) <0.14 (3σ)
CH4 (42) (1.6) 2.02 ± 0.37 0.46 ± 0.09
HCN (42) (1.6) 0.66 ± 0.07 0.15 ± 0.02

43+11
−10 (1.6) 0.67 ± 0.07 0.15 ± 0.02

C2H2 (42) (1.6) <0.49 (3σ) <0.11 (3σ)
NH3 (42) (1.6) <7.6 (3σ) <1.8 (3σ)

KL1 H2O (42) 1.7 ± 0.1(4) 446 ± 27 100
C2H6 (42) 1.7 ± 0.1(5) 4.37 ± 0.18 0.98 ± 0.07

Order 22 CH3OH (42) (1.7) 10.5 ± 1.6 2.36 ± 0.39
Order 23 13.6 ± 1.3 3.06 ± 0.35

12.4 ± 1.2(6) 2.74 ± 0.26
2014 May 24, Rh = 1.834 AU, ∆ = 1.574 AU, ∆dot = 16 km s-1

KL2 H2O (42) 1.6 ± 0.2(4) 353 ± 68 100
HCN (42) (1.6) 0.39 ± 0.10 0.11 ± 0.04

KL1 H2O (42) (1.6) 595 ± 29 100
C2H6 (42) 1.6 ± 0.1(4) 4.63 ± 0.32 0.80 ± 0.06

CH3OH (42) (1.6) 15.0 ± 2.0 2.58 ± 0.36
CH4 (42) (1.6) <5.4 (3σ) <0.91 (3σ)

MWA H2O (42) (2.0) 361 ± 107 100
CO (42) (2.0) 14 ± 2 3.9 ± 1.2

1 Rotational temperature. Values in parentheses are assumed.
2 Growth factor. Values in parentheses are assumed.
3 Global production rate. Errors in production rate include line-by-line deviation between
modeled and observed intensities and photon noise (see Bonev (2005); Bonev et al.
(2007); Dello Russo et al. (2004)).

4 Continuum (dust) growth factor.
5 Gas growth factor.
6 Weighted average CH3OH production rate from KL1 Order 22 and KL1 Order 23.

How does the primary volatile composition of comet K1 compare to other sampled

Oort cloud comets? Table 2.3 shows the mixing ratios of all targeted primary volatiles in

K1 (given as a weighted average for molecules detected on both dates). For comparison,

Table 2.3 also provides the median abundances of these molecules as measured among

Oort cloud comets using near-infrared spectroscopy only (Dello Russo et al., 2016a),
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Figure 2.3. Detections of CH4 and OH* in C/2012 K1 on 2014 May 22.

thereby avoiding uncertainties introduced when comparing results obtained over different

wavelength regimes. From these it can be seen that C2H6 (0.87%) and CH3OH (2.69%)
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Figure 2.5. Detections of H2O and OH* in C/2012 K1 on 2014 May 22.

are enriched, while CO (3.9%) and HCN (0.14%) are consistent with the cometary median.

CH4 (0.46%) and H2CO (<0.14%) are depleted, and the 3σ upper limit for C2H2 (<0.11%)

suggests it may be as well.
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Table 2.3. Primary volatiles in K1 and in Oort cloud comets observed to date.

Molecule Abundance in K1(1) (%) Median Abundance in OCCs(2) (%)
C2H6 0.87 ± 0.05 0.61

CH3OH 2.69 ± 0.21 2.14
CH4 0.46 ± 0.09 0.90
CO 3.9 ± 1.2 3.73
HCN 0.14 ± 0.02 0.19
NH3 <1.8 0.66
H2CO <0.14 0.38
C2H2 <0.11 0.17

1 Abundances are given as weighted averages for molecules detected on both dates,
excepting CO (searched only on May 24) and CH4 (detected only on May 22 – the 3σ
upper limit for CH4 on May 24 is consistent). Upper limits for non-detected species are
3σ.

2 Median abundances derived from Dello Russo et al. (2016a).

2.3. DISCUSSION

Given its primary volatile composition, it is clear that K1 is another example of

a comet which shows no systematic enrichment, depletion, or similarity to median abun-

dances. K1 does not fit into any taxonomic class, and taken together with previous examples

(Section 1.3.2), suggests that the chemical diversity among comets is more complex than

the simple organics-enriched, organics-normal, and organics-depleted framework.
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The next natural question is whether the distribution of primary volatiles among

comets is more nearly continuous versus distinct. Figure 2.7 shows abundances relative

to water for HCN, C2H6, CH3OH, and CH4, respectively, in comets. For each molecule,

most comets have abundances close to their median value, with some showing enrichment

in certain molecules and depletion in others. Overall, the abundances of well-sampled

primary volatiles, such as HCN, C2H6, and CH3OH, suggest the emergence of a continuous

distribution among comets. The graphic for HCN (Figure 2.7A), one of the most well

measured volatiles in comets, shows an example of a well filled-in continuous distribution

of volatile abundances between 0.6% and 0.05%. The results for K1 reinforce this view.

Prior to this study, there was a lack of comets with C2H6 abundances between 0.87% and

1.70% (between nearly “average” and “enriched”; Figure 2.7B). While the C2H6 abundance

in K1 on May 24 was within the range observed to date (due to the higher water production

rate in that setting, see Section 2.2 and Table 2.2), on May 22 it was ∼1% and fell within

the previously unsampled range. This also suggests that the apparent gap for CH3OH abun-

dances between 0.20% and 1.0% (between “depleted” and close to “average”; Figure 2.7C)

may be expected to be “filled in” with additional comet observations.

CH4 has been sampled in fewer (∼ 20) comets, and it appears that a gap remains

between C/1999 T1 and the remaining comet population (Figure 2.7D); however, due to the

large uncertainty in the T1 CH4 abundance, the significance of the gap is unclear. CH4 is

difficult to detect, particularly in JFCs, due to lack of sensitivity with available instruments

and (especially) the requirement that observable comets have a sufficiently large geocentric

Doppler shift to displace cometary emission lines from the (opaque) cores of corresponding

telluric absorptions. Clearly, more work is needed to characterize CH4 in comets, and JFCs

in particular.

Examination of Figure 2.7 also shows that the level of enrichment or depletion in

a given comet does not necessarily correlate across all molecules sampled. One comet

may be enriched in CH3OH and consistent with normal in HCN (K1 – see red arrows in
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Figure 2.7. Distribution of abundances for selected volatiles in comets as measured in
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Figure 2.7) while another may be depleted in CH3OH but not HCN (e.g., 73P/SW 3B),

challenging attempts to assign definitive taxonomic classes. In support of this conclusion
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is the lack of strong correlation between the abundance of CH3OH and the other species

represented in Figure 2.7. Dello Russo et al. (2016a) found correlation coefficients of 0.37,

0.66, and 0.51 between CH3OH and HCN, C2H6, and CH4, respectively.

There are several unanswered questions that need to be addressed before the dis-

tribution of volatile abundances in comets can be understood. First, what is the range of

abundances for trace volatiles in comets? Are the currently proposed “taxonomic end-

members” (C/2001 A2 on the “enriched” end, and D/1999 S4 on the “depleted” end) truly

representative of compositional extremes? On the low abundance end, we are limited by

technology and the sensitivity of state-of-the-art techniques. On the upper end, we are

limited by the relatively small number of comets measured to date with adequate S/N. Of

the ∼ 1011 cometary nuclei that reside in the Oort cloud (Emel’Yanenko et al., 2007), we

have measured primary volatile abundances for only about 40 comets in the near-infrared.

For some molecules, most specifically C2H2 and OCS, that number is much lower, due

principally to lack of sensitivity (in the case of C2H2) and/or spectral coverage (in the case

of OCS) in “standard” NIRSPEC settings.

However, both areas are expected to be addressed with the availability of a powerful

new cross-dispersed spectrograph (iSHELL) at theNASA InfraredTelescope Facility (IRTF;

(Rayner et al., 2012, 2016)). Specifically, regarding C2H2, iSHELL/IRTF will enable very

long on-source integrations, including allowance for daytime observing. Regarding OCS,

many lines will be sensed simultaneously with CO and H2O in a standard iSHELL M-

band setting. Conversely, targeting OCS with NIRSPEC requires an additional setting

to MWA, one that includes CO lines having higher rotational quantum numbers. For

rotational temperatures typically found in comets, these higher-J lines are relatively weaker

than the low-J lines included in MWA (e.g., see Figure 4 in Gibb et al. (2012)). As the

answers to these questions become more clear, one may also ask whether the distribution of
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primary volatile abundances in comets is a primordial effect preserved from the cometary

formation in the solar nebula, or if instead heterogeneous nuclei, such as the binary comet

67P/Churyumov-Gerasimenko (Rickman et al., 2015) are being sampled.

Once the distribution of volatiles abundances in comets is understood, attempts can

be made to interpret the abundance of a given volatile in a comet in terms of the extant

conditions during its formation. In principle, this can be accomplished by comparing

volatile abundances measured in comets with those of ices as predicted by models of

protoplanetary disk midplanes (Drozdovskaya et al., 2016). However, as with adding to

the inventory of comet primary volatile abundances, much work remains to be done in

improving protoplanetary disk models before firm conclusions can be drawn. Clearly, more

studies of the primary volatile compositions of comets are needed to answer these complex

questions.
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3. A TALE OF "TWO" COMETS: THE PRIMARY VOLATILE COMPOSITION
OF COMET 2P/ENCKE ACROSS APPARITIONS AND IMPLICATIONS FOR

COMETARY SCIENCE

3.1. COMET 2P/ENCKE

The first quarter of 2017 provided the opportunity to address many pressing matters

in cometary sciencewith a highly favorable apparition of the unique ecliptic comet 2P/Encke

(hereafter Encke). Encke is known for its weak dust production, asymmetric coma, and one

of the shortest orbital periods among known comets (3.3 years). In terms of its dynamical

history, Encke is truly unique among comets. In addition to its small perihelion distance

(q ∼ 0.3 AU), Encke has the smallest known aphelion distance of any comet (4.1 AU),

distinguishing it from JFCs for which this is beyond Jupiter’s orbit (5.2 AU). Explaining

how Encke evolved to its current orbit, along with the fact that it is still an active comet,

has proven challenging. Increasingly sophisticated dynamical modeling efforts (Levison

et al., 2006) suggest that after becoming decoupled from Jupiter, Encke accumulated a dust

mantle and became temporarily inactive. Encke then evolved into the ν6 secular resonance,

causing its perihelion distance to slowly decrease, eventually blowing away its dust mantle,

reigniting cometary activity, and dooming Encke to a collision with the Sun in 105 – 106

years.

The newly commissioned iSHELL spectrograph at the NASA Infrared Telescope

Facility (IRTF) was used to characterize the volatile composition of Encke at small Rh (∼

0.4 AU) and at high ∆dot (∼ +27 km s-1) on three post-perihelion dates. The excellent

sensitivity, large spectral grasp, and daytime observing capabilities of iSHELL allowed for

the secure measurement of CO and CH4, the detection and stringent constraint of OCS
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Table 3.1. 2P/Encke observing log and H2O production rates.

Date iSHELL UT Rh ∆ ∆dot T int Q(H2O)
(2017) Setting (AU) (AU) (km s-1) (minutes) (1028 s-1)
3/21 Lp1 19:52 – 20:54 0.456 0.751 26.87 34 3.53 ± 0.31

L1 21:53 – 22:28 0.458 0.753 27.10 26 3.51 ± 0.11
3/22 M2 18:52 – 20:01 0.473 0.767 27.15 50 4.14 ± 0.16
3/25 LCS 17:49 – 20:43 0.526 0.814 27.14 96 2.89 ± 0.06

21:53 – 22:22
1 Rh, ∆, and ∆dot are heliocentric distance, geocentric distance, and geocentric velocity,
respectively, of 2P/Encke. T int is total integration time on source, and Q(H2O) is the
global water production rate. Seeing increased over the course of the day from∼ 0.6′′ to
∼ 1.2′′, from 0.6′′ to ∼ 2′′, and from ∼ 1′′ to 1.5′′ onMarch 21, 22, and 25, respectively.
The column burden of atmospheric water vapor (expressed in precipitable millimeters)
retrieved in fitting synthetic telluric absorption models to flux standard star continua
was 1.7, 1.2, and 1.8 on March 21, March 22, and March 25, respectively.

and C2H2, respectively, and the first comprehensive characterization of primary volatile

composition in a comet across multiple perihelion passages by comparing to published

results from the 2003 apparition (Radeva et al., 2013) – hereafter referred to as RD13.

During its 2017 apparition, Encke reached perihelion on March 10 and was closest

to Earth (0.65 AU) on March 17. On UT 2017 March 21, 22, and 25, Encke was observed

with the facility high-resolution (λ/∆λ ∼ 40, 000), near-infrared, immersion-grating echelle

spectrograph iSHELL (Rayner et al., 2012, 2016) at the 3 m NASA IRTF to characterize

its volatile composition. The observing log is shown in Table 3.1.

3.2. RESULTS

Data for comet Enckewere analyzed using the procedures described in Section 1.6.1.

Results specific to comet Encke are discussed in turn below.

3.2.1. Growth Factors. Growth factors were determined for both the gas and the

dust when signal-to-noise ratio (S/N) was sufficiently high (i.e., only for water and OH

prompt emission, henceforth denoted OH*). Because OH* is well established as a reliable
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proxy for the production and spatial distribution of its parent, H2O, (Bonev and Mumma,

2006; Bonev et al., 2006; Mumma et al., 2001), these two species provided similar GFs

(see Table 3.2).

It is noteworthy that the Q-curve methodology assumes a spherically symmetric

coma and constant gas outflow speed. Although this spherically symmetric approach does

not reproduce the aspherical and asymmetric coma of Encke (see Dorman et al. (2013);

Ihalawela et al. (2011) and refs. therein), the calculated abundances (relative to water)

should be accurate, since it was established that “symmetrizing” Qglobal by averaging values

to either side of the nucleus provides a reliable measure of total molecular production

rate (Xie and Mumma, 1996a,b). Furthermore, any over (or under) estimate in volatile

production rates introduced by the model will apply to all volatiles with similar spatial

distributions and cancel out in determining relative abundances.

3.2.2. Spatial Profiles. Spatial profiles of emission were extracted for H2O, OH*,

CO, and CH3OH in Encke. Figure 3.1A shows spatial profiles of co-measured emissions

in Encke for OH*, CH3OH, and dust on March 21. Figure 3.1B shows the same for H2O,

CO, and dust on March 22. The CO and CH3OH profiles were smoothed by 3 pixels due

to low S/N. Emission from dust on both dates show Encke’s peculiar sunward-facing fan,

which has been consistently observed during Encke’s perihelion passages for over a century

(Sekanina, 1988a,b). While low S/N prevents definitive conclusions, Figure 3.1A suggests

that the CH3OH emission may have peaked sunward of the OH* emission on March 21,

and Figure 3.1B suggests that the CO emission may have been narrower than that for the

dust, whereas the H2O emission was broader.

3.2.3. Rotational Temperature. Consistent rotational temperatures for multiple

molecules were found on all dates (including H2O). The rotational temperature (T rot) for

H2O was well-constrained and was consistent (within 1σ uncertainty) on all dates (being

62+2
−3 K, 67 ± 6 K, and 63 ± 2 K on March 21, 22, and 25, respectively). Rotational

temperatures, production rates, and mixing ratios for all sampled molecules are listed in
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Figure 3.1. Coma spatial distributions of volatiles in 2P/Encke. A. Spatial profiles of
co-measured emissions in Encke for OH* (prompt emission, black), CH3OH (green) and
dust (red) on UT 2017 March 21. The slit was oriented along the projected Sun-comet line
(position angle 234°), with the Sun-facing direction to the left as indicated. Also shown
is the Sun-comet-Earth angle (phase angle, β) of 108°, so largely in the sky plane. The
horizontal bar indicating 1′′ corresponds to a projected distance of approximately 550 km
at the geocentric distance of Encke. B. Spatial profiles of co-measured emissions for H2O
(black), CO (orange), and dust (red) on UT 2017 March 22. The CO and CH3OH profiles
have been smoothed by 3 pixels. The observing geometry on March 22 was similar to that
of March 21, with a position angle of 234°and a phase angle of 104°.

Table 3.2. When a rotational temperature for a particular molecule could not be retrieved,

the rotational temperature from simultaneously measured H2O within the same setting was

assumed.

3.2.4. Secure Detections of CO and CH4. The detections of CO and CH4 in

Encke are particularly notable for two reasons: (1) The paucity of measurements of CO and

CH4 in ecliptic comets in general, and (2) the measurement of these hypervolatiles in the

most thermally-evolved comet known. Of all primary volatiles systematically measured in

comets, these two molecules are most sensitive to thermal processing, but as noted earlier

(Section 1.4), they are also among the most difficult to sample from the ground due to lack

of sensitivity and/or adequate geocentric velocity. Encke’s excellent geocentric velocity
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Table 3.2. Volatile composition of 2P/Encke.

Setting Molecule T rot
(1) (K) Growth Factor(2) Q(3) (1025 mol s-1) Qx/QH2O (%)

2017 March 21, Rh = 0.456 AU, ∆ = 0.757 AU, ∆dot = 27.0 km s-1
L1 H2O 68+2

−3 2.04 ± 0.23 3505 ± 111 100
HCN 78+15

−12 (2.04) 6.20 ± 0.50 0.18 ± 0.02
(68) (2.04) 5.89 ± 0.47 0.17 ± 0.02

LP1 C2H6 (68) (1.82) 1.29 ± 0.14 0.037 ± 0.005
CH3OH 52+7

−6 (1.82) 27.5 ± 1.5 0.78 ± 0.08
(68) 30.7 ± 1.8 0.87 ± 0.09

CH4 (68) (1.82) 3.74 ± 0.28 0.11 ± 0.01
H2CO (68) (1.82) 9.42 ± 1.05 0.27 ± 0.04
OH* (68) 1.82 ± 0.19 3534 ± 313 100
2017 March 22, Rh = 0.473 AU, ∆ = 0.767 AU, ∆dot = 27.1 km s-1

M2 H2O 67 ± 6 2.25 ± 0.11 4141 ± 158 100
CO (67) (2.25) 17.9 ± 1.5 0.43 ± 0.04
OCS (67) (2.25) 2.65 ± 0.55 0.06 ± 0.01
2017 March 25, Rh = 0.526 AU, ∆ = 0.814 AU, ∆dot = 27.2 km s-1

LCS(4) H2O 63 ± 2 2.02 ± 0.20 2890 ± 62. 100
C2H2 (63) (2.02) <0.2 (3σ) <0.007 (3σ)
HCN 66+16

−11 (2.02) 3.23 ± 0.26 0.11 ± 0.01
(63) (2.02) 3.20 ± 0.25 0.11 ± 0.01

NH3 (63) (2.02) 17.8 ± 1.1 0.61 ± 0.04
NH2 (63) (2.02) 6.81 ± 1.01 0.23 ± 0.03

1 Rotational temperature. Values in parentheses are assumed.
2 Growth factor. Values in parentheses are assumed.
3 Global production rate. Errors in production rate include line-by-line deviation between
modeled and observed intensities and photon noise (see Bonev (2005); Bonev et al.
(2007); Dello Russo et al. (2004)).

4 Custom L-band setting with iSHELL’s user-defined cross disperser position abilities,
spanning 2.9 – 3.1 µm.

(> 27 km s-1 for all dates) allowed for firm detections of both species. Each hypervolatile

has been detected in less than 10 ecliptic comets (most below the 5σ level), making the

measurements in Encke a critical component for establishing statistics for these species

in ecliptic comets, and determining the importance of natal versus evolutionary effects
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Figure 3.2. Extracted spectra showing detections of CO and H2O on UT 2017 March 22 in
2P/Encke.

on present comet volatile composition. Figures 3.2 and 3.3 show clear CO, H2O, and CN

emissions in Encke superimposed on the cometary continuum, and Figures 3.4 and 3.5 show

corresponding detections for CH4, C2H6, and CH3OH, along with (co-measured) OH*.

3.2.5. Other Volatiles. In the 3 µm region, emission from the nitrogen-bearing

species HCN (Figure 3.6) was detected, as well as from NH3 (Figure 3.7) for the first

time in Encke. C2H2 was stringently constrained (Figure 3.6), with a (3σ) upper limit

(<0.007% relative to H2O; Table 3.2) that is consistent with (but well below) that reported

by RD13 (<0.08%-0.10%). Figure 3.8 shows Order 179 of the iSHELL L filter, which

samples H2O lines spanning a broad range of rotational energies and thus is particularly

diagnostic of T rot. OCS was also detected with signal-to-noise exceeding 4σ, representing
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Figure 3.3. Extracted spectra showing detections of CO, CN, and H2O on UT 2017 March
22 in 2P/Encke.

the first reported value for its abundance in Encke (Figure 3.9). CN emissions in Encke

were strong (Figure 3.3,3.9) consistent with that seen in other comets measured at small Rh

(e.g., Dello Russo et al. (2016a)). Analysis of CN in Encke is the subject of a future paper.

In the LP1 setting, C2H6 ν7 band emission, together with CH3OH ν2 band and

CH4 ν3 P-branch lines, was detected simultaneously in Orders 154 and 155 (Figure 3.5).

CH3OH ν3 band, H2CO ν5 band, H2CO ν1 band (Figure 3.10), and CH4 ν3 R-branch lines

(Figure 3.4) were also measured. These were sampled simultaneously with OH* in five

orders. The value of Q(H2O) so determined was used in establishing mixing ratios (i.e.,

abundances relative to H2O) for C2H6, CH3OH, CH4, and H2CO.
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Figure 3.4. Extracted spectra showing detections of CH4 and OH* on UT 2017 March 21
in 2P/Encke.

3.3. COMPARISONS WITH 2003 AND OTHER COMETS MEASURED

The 2017 apparition of Encke provided an opportunity to conduct the first compre-

hensive comparison of primary volatile composition through multiple perihelion passages,

thereby allowing pressing questions in cometary science to be addressed. These include

testing possible evolutionary and/or heliocentric distance effects on volatile production, and

also examining asymmetries in volatile production about perihelion. Each of these topics

will be discussed in turn, and Encke will be placed in the context of other comets observed

to date.

3.3.1. Dramatic Compositional Differences Compared to the 2003 Apparition.

Dramatic differences were observed in the primary volatile composition of Encke compared

to the 2003 apparition. RD13 characterized the primary volatile composition of Encke in
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Figure 3.5. Extracted spectra showing detections of CH4, C2H6, CH3OH, and OH* on UT
2017 March 21 in 2P/Encke.

2003 at Rh ∼ 1.2 AU pre-perihelion using NIRSPEC at the W. M. Keck Observatory. Ta-

ble 3.3 shows a comparison from 2003 and 2017. Figure 3.11 provides the same comparison

graphically, along with near-infrared measurements of each volatile in comets to date and

their respective mean value among comets (Dello Russo et al., 2016a; DiSanti et al., 2017).

The contrast between the two apparitions is obvious. Figure 3.11 illustrates that:

1. CH3OH (0.87%), C2H6 (0.037%), and CH4 (0.11%) show clear depletion, both

with respect to the 2003 apparition as well as among measured comets. The 2003

measurement of CH3OH (3.48%) placed Encke among the most CH3OH-enriched

comets observed to date, whereas the 2017measurement is clearly depleted. Similarly

the C2H6 mixing ratio (depleted by a factor of 10 compared to 2003) is the lowest

measured in any comet to date.
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Figure 3.6. Extracted spectra showing detections of of HCN, NH2, and OH* on UT 2017
March 25 in Encke.

2. H2CO (0.27%) and HCN (0.12%) are enriched compared to their respective 2003

abundances. H2CO is strongly enriched (by greater than a factor of 2) and consistent

with the mean value among comets, and HCN is moderately enriched (by less than a

factor of 2) compared to 2003 but is significantly less than its mean value.

3. NH3 was not reported in RD13, but its value in 2017 (0.61%) is consistent with its

mean. Themixing ratio for CO (0.43%) and the (3σ) upper limit for C2H2 (< 0.007%)

are both consistent with upper limits reported for 2003, and both are strongly depleted

compared to their respective mean values.
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Figure 3.7. Extracted spectra showing detections of of NH3, NH2, H2O, and OH* on UT
2017 March 25 in Encke.

3.3.2. Interpreting Differences in the Volatile Content of Encke Across Appari-

tions. The most striking feature of the primary volatile composition of Encke during the

2017 apparition is its difference from that reported for 2003. Understanding the cause(s)

of these differences – and their significance – is crucial to tying observed primary volatile

compositions to formative conditions in the solar nebula. Four possible explanations are

examined (in turn) for these differences, each of whichmay have contributed simultaneously

and to varying degrees: (1) dependence of volatile production on heliocentric distance, (2)

evolutionary processing of a heterogeneous nucleus, (3) pre-/post-perihelion asymmetries

in volatile mixing ratios, and (4) viewing geometry effects.



36

3465 3460 3455 3450 3445 3440

0

  20

  20

2.89 2.90

0

0

  40

Fl
ux

 D
en

si
ty

 (1
0-1

8  W
/m

2 /c
m

-1
)

λ (μm)
 March 25

OH*

H2O

Wavenumber (cm-1)

Observed

Observed - Continuum

Observed - Continuum - Models

Figure 3.8. Extracted spectra showing detections of of H2O and OH*, as well as determi-
nation of T rot, on UT 2017 March 25 in Encke.

3.3.2.1. Dependence of volatile production on heliocentric distance. As noted

earlier, near-infrared spectroscopic studies of comets spanning large ranges of heliocentric

distances during a given apparition are sparse. Provided that the primary volatile com-

position of the coma accurately reflects the composition of the ices in the nucleus once

sublimation of all volatiles has been completely activated, then mixing ratios of primary

volatiles in comet comae should remain relatively constant once H2O controls the overall

activity. Comets observed to date suggest that this is true in general, although some pri-

mary volatiles (NH3, H2CO, and C2H2) and fragment species (CN and NH2) show a trend

towards enhanced production at Rh < 0.8 AU (possibly due to release from grains; e.g.,

see Dello Russo et al. (2016a)). Measurements at radio wavelengths have also shown that

H2CO may originate from extended sources (e.g., Cordiner et al. (2014)) and clearly shows
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Figure 3.9. Extracted spectra showing detections of of OCS, H2O, and CN on UT 2017
March 22 in Encke.

increasing abundances with decreasing Rh, possibly due to thermal degradation of polymers

(Fray et al., 2006). Although it was not possible to extract spatial profiles of H2CO emission

with adequate S/N to test for the presence of an extended source, the enrichment of H2CO

in 2017 (0.27%, Rh ∼ 0.4 AU) compared to 2003 (<0.13%, Rh ∼ 1.2 AU) suggests that this

may be the case for H2CO in Encke.

DiSanti et al. (2016) found that HCN became enriched in comet D/2012 S1 (ISON)

at small Rh relative to measurements at larger Rh, increasing from 0.07% at Rh = 0.82 AU

to 0.26% at Rh = 0.43 AU. A similar trend as observed in HCN with Encke in 2017 (0.17%,

Rh = 0.45 AU on March 21) compared to 2003 (0.09%, Rh ∼ 1.2 AU). However, HCN in

Encke decreased from 0.17% to 0.11% on March 25 at Rh = 0.53 AU. Given the nearly

four-fold increase in HCN in ISON between Rh = 0.83 and 0.46 AU, it is possible that the
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Figure 3.10. Extracted spectra showing detections of of H2CO and OH* on UT 2017March
21 in Encke.

decrease in HCN in Encke fromMarch 21 toMarch 25may also be explained by its receding

0.08 AU from the Sun. However, this does not explain the severe depletion of CH3OH and

C2H6 in 2017 compared to 2003, leaving the question unresolved. Clearly, further serial

measurements of Encke over a range ofRh are needed to distinguish the possible dependence

of its volatile composition on heliocentric distance from other factors.

3.3.2.2. Potential evolutionaryprocessing of a heterogeneous nucleus. The near-

infraredmeasurements in this study do not resolve the nucleus, and the few comets for which

the structure of the nucleus is known are those visited by spacecraft. The Rosetta mission

found a heterogeneous nucleus for comet 67P/Churyumov-Gerasimenko that is likely a

contact binary (Rickman et al., 2015). In Encke, it is possible that compositional differ-

ences within a heterogeneous nucleus are being viewed. This suggests two possibilities
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Table 3.3. Primary volatile abundances in 2P/Encke across apparitions.

Molecule 2017 Apparition(1) 2003 Apparition(2) Mean Value among
%, relative to H2O %, relative to H2O Comets3

C2H6 0.037 ± 0.005 0.32 ± 0.03 0.55 ± 0.08
CH3OH 0.87 ± 0.09 3.48 ± 0.27 2.06 ± 0.20
CH4 0.11 ± 0.01 0.34 ± 0.10 0.78 ± 0.09
CO 0.43 ± 0.04 <1.77 5.2 ± 1.3
HCN 0.12 ± 0.01 0.09 ± 0.01 0.21 ± 0.02
NH3 0.61 ± 0.07 · · · 0.80 ± 0.20
H2CO 0.27 ± 0.04 <0.13 0.31 ± 0.06
C2H2 <0.007 <0.08 0.13 ± 0.02
OCS 0.06 ± 0.01 · · · · · ·

1 This work. Abundances are given as weighted averages for molecules detected on
multiple dates (HCN). Upper limits for non-detected species are 3σ. In all cases values
are expressed relative to simultaneously measured H2O.

2 Abundances taken from Radeva et al. (2013).
3 Mean values and 1σ uncertainties amongmeasured comets taken fromDello Russo et al.
(2016a). No value is listed for OCS due to the paucity of measurements at near-infrared
wavelengths

– (1) a compositionally different area dominated its activity in 2017 compared to 2003

(seasonal differences), or (2) subsequent perihelion passages have exhausted material that

was active during 2003, and new material within the nucleus that was covered during the

2003 apparition was exposed in 2017 (evolutionary changes). In light of the measurements

of compositional diversity from 2003 to 2017, it is noteworthy that pre-perihelion optical

observations of Encke fromMcDonald Observatory during 2003 and 2017 show no remark-

able changes in composition (A. McKay 2018, personal communication). This suggests

that seasonal effects may dominate evolutionary changes in the bulk composition of Encke.

3.3.2.3. Asymmetry in volatile mixing ratios about perihelion due to seasonal

effects. Another possible explanation for the observed differences in Encke’s composition is

asymmetry in volatile mixing ratios about perihelion, in which distinct, chemically hetero-
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geneous sources on the nucleus dominate volatile release due to seasonal effects. Although

observing time was granted to investigate such asymmetries in Encke with iSHELL, the

pre-perihelion dates were completely weathered out.

Asymmetry in mixing ratios of fragment species about perihelion has been reported

in the literature for Encke. A’Hearn et al. (1985) found that OH (and by proxy, water)

production was symmetric about perihelion, whereas C2, C3, and CN production was much

lower post-perihelion vs. pre-perihelion. If this asymmetry in fragment species production

has persisted to the present day, then one might expect that the post-perihelion observations
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in this work (obtained < 20 days post-perihelion) should show depletion in potential parent

species for these fragments compared to the observations reported in RD13 (obtained >

30 days pre-perihelion). Although direct comparisons between mixing ratios of primary

volatile and fragment species are difficult owing to the complicated lineage of fragment

species (e.g., multiple molecules, dust grain sources), the results support this hypothesis,

with the important exceptions of HCN and H2CO. As noted earlier, the abundance ratios

HCN/H2O and H2CO/H2O are enriched compared to that reported in RD13, perhaps due to

additional sources becoming active at the small heliocentric distances of the observations.

Non-uniform volatile mixing ratios have been observed in other comets, perhaps

most notably during the Rosetta mission to comet 67P/Churyumov-Gerasimenko. At comet

67P/C-G, Rosetta found that mixing ratios of CO andCO2 in the coma varied due to seasonal

effects on the nucleus (Hässig et al., 2015). Furthermore, variation in volatile mixing ratios

was found on smaller timescales, with some volatiles (such as CH4) showing diurnal

variations that differed from those for other volatiles, such as CO and C2H6 (Bockelée-

Morvan et al., 2016; Fink et al., 2016; Luspay-Kuti et al., 2015).

At comet 103P/Hartley 2, EPOXI/DIXI revealed a comet with distinct sources of

outgassing on the nucleus. Strong CO2 emission from the smaller lobe dragged icy grains

along into the coma, from which the ices sublimed and added to its gas content. In contrast,

activity in the waist region was dominated by direct release of water gas (A’Hearn et al.,

2011; Protopapa et al., 2014). Despite the heterogeneous outgassing at 103P/Hartley 2,

ground-based observations showed that mixing ratios of trace species in the coma remained

relatively constant (Dello Russo et al., 2011; Mumma et al., 2011).

Additionally, non-uniformmixing ratios of CO/H2Owere observed in comet C/2009

P1 (Garradd) by both ground-based studies (McKay et al., 2015) and space-based studies

from the High Resolution Instrument Infrared Spectrometer aboard the Deep Impact Flyby

spacecraft (Feaga et al., 2014). In C/2009 P1, H2O production rates traced the predicted
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heliocentric dependence, rising and then falling near perihelion. However, CO production

increased monotonically throughout the apparition, continuing to rise long after perihelion,

perhaps due to seasonal effects on the nucleus (Bodewits et al., 2014; McKay et al., 2015).

Seasonal effects have been proposed to interpret imaging and photometric studies

of Encke’s coma (e.g., Ferrin (2008); Sekanina (1988a) and references therein; Farnham

(2009)), which suggest that (at least) two distinct nucleus sources receive seasonal illumi-

nation and account for outgassing in Encke during different portions of its orbit. However,

there is debate regarding exactly when a given source activates and begins to dominate out-

gassing. Unfortunately, these observations are unable to trace the measured composition of

the gases to individual source regions, and thus further test for compositional heterogeneity.

Perhaps the most compelling evidence linking the difference in primary volatile

composition to the proposed existence of heterogeneous sources on the nucleus is the

dramatic depletion of the least volatile trace species, CH3OH, measured in Encke. RD13

reported CH3OH = 3.48 ± 0.27% during the 2003 apparition, making Encke one of the most

highly CH3OH-enriched comets observed in the near-infrared. In contrast, the measured

2017 mixing ratio (CH3OH/H2O = 0.87 ± 0.09%) places Encke decisively among CH3OH-

depleted comets (see Figure 3.11 and Table 3.3). Combined with observed asymmetries

in fragment species, the lack of bulk compositional changes seen at other wavelengths,

and the observational evidence for seasonal effects governing outgassing in Encke, the

“switch” from a highly CH3OH-enriched comet to a CH3OH-depleted comet (and other

compositional differences observed in 2017 compared to 2003), may be explained by a

combination of chemically heterogeneous nucleus sources and seasonal effects on Encke.

A contribution from additional sources activated at small Rh also cannot be ruled out, as

volatiles that have tended to show increased abundances or emission intensities at small Rh

(H2CO, NH3, NH2, and CN) are generally enhanced compared to other detected species in

Encke in 2017.
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3.3.2.4. Consideration of viewing geometry. Encke has displayed an aspherical

and asymmetric coma in almost every recorded apparition since 1896 (Sekanina, 1988a,b).

Its unusual comamorphology, combinedwith the possibility that different sources on the nu-

cleus may account for outgassing during different portions of its orbit, make considerations

of observing geometry important when interpreting results of ground-based composition

studies and comparing across apparitions. The observations in this work may have sampled

a dramatically different projection of the non-uniform coma into the plane of the sky than

those reported in RD13. In any case, the differences in its measured volatile composition

between 2003 and 2017 are pronounced.

In addition, Encke’s rotation period (∼ 11 hours; Fernandez et al. (2005); Lowry

and Weissman (2007); Woodney et al. (2007)) is important to consider. The longest

observations of Encke on March 25 (UT 17:49 – 22:22) comprised ∼ 1/3 of a complete

rotation, so it is possible that active sites rotated into or out of view during the course

of both the observations reported here as well as those from 2003. These (possible)

rotational effects may explain the decrease in HCN in Encke from 0.17% on March 21 to

0.11% on March 25. Analysis of time series of ground-based molecular spectra obtained

with IRAM and CSO of 103P/Hartley 2 found that the varying illumination of chemically

heterogeneous regions on the nucleus due to rotation caused significant changes in volatile

release, creating variations on timescales of hours to days (Boissier et al., 2014; Drahus

et al., 2012). However, despite these strong rotational effects observed at radio wavelengths,

mixing ratios of primary volatiles derived from ground-based near-infrared measurements

of the bulk coma remained relatively constant (Dello Russo et al., 2011; Mumma et al.,

2011).

A search for similar short timescale variabilitywas conducted in Encke by comparing

derived HCN/H2O in a time series of spectral extracts. Each spectral extract represented 8

minutes on-source integration time, and the entire time series spanned three hours of clock

time. No evidence was found for statistically significant variation in HCN/H2O during this
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time series; however, as noted earlier, this represents less than 1/3 of a complete rotation

period for Encke. Thus, further measurements are needed to quantify how much (if any)

impact these effects had on calculated mixing ratios during each apparition of Encke.

3.3.2.5. Comparison of primary volatile mixing ratios with photodissociation

products. An important task in cometary science is relating measured abundances of

photodissociation products (i.e., fragment species) found in optical studies to potential

parent volatiles. This is a challenging endeavor, because a given fragment species can have

several possible parents. In contrast, near-infrared studies of primary volatiles suffer no

such difficulty. Comparison of fragment species mixing ratios in the optical to near-infrared

measurements of primary (parent) volatiles is one way to test parent-daughter relationships.

In particular, one can compare the ratios C2/OH, CN/OH, and NH/OH to the mixing ratios

of C2H2/H2O, HCN/H2O, and NH3/H2O, respectively. Although this is an admittedly

simplistic comparison, one can infer whether the mixing ratios of these primary volatiles

can account for those of fragment species found in Encke. Unfortunately, the majority of the

published data for Encke is taken from pre-perihelion observations. This adds an additional

layer of uncertainty given its asymmetric behavior of volatile mixing ratios about perihelion

observed at optical wavelengths. Additionally, with the exception of the NH2/H2O and

NH3/H2O measurements from this work, the observations of the fragment species in this

comparison were not taken simultaneously with those of the primary species. Thus, each

of the processes mentioned in Section 3.3.2 may affect the comparisons; however, they are

still informative.

Table 3.4 compares mixing ratios of primary volatiles to those of fragment species

in Encke for several apparitions. The data are divided into pre- and post-perihelion ob-

servations for clarity. Note that the most direct comparisons between primary volatile and

fragment species in Encke are those reported in RD13 to published pre-perihelion frag-

ment species mixing ratios, and the mixing ratios reported in Roth et al. (2018) to the

post-perihelion fragment species mixing ratios reported in A’Hearn et al. (1985). Since
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Table 3.4. Comparison of primary volatile and fragment species mixing ratios in 2P/Encke.

Pre-perihelion Post-perihelion
log

[
Q(CN)
Q(OH)

]
log

[
Q(HCN)
Q(H2O)

]
log

[
Q(CN)
Q(OH)

]
log

[
Q(HCN)
Q(H2O)

]
-2.18a -3.04 ± 0.11b -2.54c -2.91 ± 0.08d

-2.04 ± 0.44e

log
[

Q(C2)
Q(OH)

]
log

[
Q(C2H2)
Q(H2O)

]
log

[
Q(C2)
Q(OH)

]
log

[
Q(C2H2)
Q(H2O)

]
-2.36a <-3.09b <-2.76c <-4.15d

-2.23 ± 0.03f

log
[

Q(NH)
Q(OH)

]
log

[
Q(NH3)
Q(H2O)

]
log

[
Q(NH2)
Q(H2O)

]
log

[
Q(NH3)
Q(H2O)

]
-2.25 ± 0.03f – -2.62 ± 0.13d -2.21±0.07d

a A’Hearn et al. (1985). Measurements acquired at Rh = 0.9 AU during the 1984 appari-
tion.

b Radeva et al. (2013). Measurements acquired atRh = 1.2 AU during the 2003 apparition.
c A’Hearn et al. (1985). Measurements acquired at Rh = 0.62 AU during the 1984
apparition.

d Roth et al. (2018). Measurements acquired at Rh = 0.4 AU during the 2017 apparition.
e Ihalawela et al. (2011). Measurements acquired at Rh = 1.4 AU during the 2003
apparition.

f Dorman et al. (2013). Measurements acquired atRh =1.4AUduring the 2003 apparition.

A’Hearn et al. (1985) report mixing ratios over a range of Rh, comparisons are made to their

measurements taken at Rh most similar to RD13 (∼ 1.2 AU) or to those reported in Roth

et al. (2018) (∼ 0.4 AU), respectively.

For the pre-perihelion data, the primary volatile mixing ratios HCN/H2O and

C2H2/H2O reported in RD13 cannot account for the mixing ratios CN/OH or C2/OH in

A’Hearn et al. (1985) or any other study, suggesting that HCN and C2H2 are not the sole

parents of CN and C2, respectively, during the pre-perihelion portion of an apparition. The

mixing ratios HCN/H2O and C2H2/H2O reported in Roth et al. (2018) cannot account for

the post-perihelion mixing ratios CN/OH and C2/OH, and also suggest that HCN and C2H2

are not their sole parents.



46

Similar trends have been observed for other short-period comets. MeasuredHCN/H2O

andC2H2/H2O for comets 103P/Hartley 2, 6P/d’Arrest, and 45P/Honda-Mrkos-Pajdus̆áková

(hereafter 45P/HMP) cannot account for their CN/OH and C2/OH, respectively (A’Hearn

et al. (1995); Dello Russo et al. (2016a) and refs. therein; DiSanti et al. (2017)). However,

the mixing ratio NH3/H2O reported in Roth et al. (2018) is large enough to account for both

the reported NH2/H2O mixing ratio, as well as the NH/OH mixing ratio in pre-perihelion

observations, suggesting that no additional parents may be needed to explain these fragment

species abundances. Additionally, the mixing ratio NH3/H2O is also consistent with that

predicted by Dorman et al. (2013) based on their measured NH/OH.

3.3.3. Comparison to Comets as Measured at Near-Infrared Wavelengths.

Combined with previous work, the results of the 2017 perihelion passage of Encke can

be placed into the context of the comet population observed at near-infrared wavelengths to

date, including the hypervolatile content of comets and measurements of comets at small

Rh. Aspects of Encke’s place within this diverse population are discussed in turn below.

3.3.3.1. Comparison to measurements of other comets at small Rh. The mea-

surements of Encke at Rh ∼ 0.4 AU are among only a handful of IR studies of comets at Rh

< 0.8 AU. Of particular interest are OCC D/2012 S1 (ISON) and JFC 45P/HMP, both of

which were measured at similarly small Rh. ISON, a dynamically new, sun-grazing OCC

that was the subject of a worldwide observing campaign, showed mixing ratios of HCN,

NH3, C2H2, and H2CO that increased as its heliocentric distance decreased from 0.83 AU

to inside 0.6 AU (Dello Russo et al., 2016b; DiSanti et al., 2016). 45P/HMP, the first JFC

to have its primary volatile composition sampled within Rh < 0.8 AU, was enriched in

CH3OH, strongly depleted in CO and HCN, and consistent with respect to median values

for CH4, H2CO, NH3, C2H2, and C2H6 (DiSanti et al., 2017). In these respects, Encke

is perhaps most similar to ISON, in that H2CO and HCN were enriched at Rh ∼ 0.4 AU
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in 2017 compared to Rh ∼ 1.2 AU in 2003., however as mentioned more observations are

needed to test whether this owes more to heliocentric distance rather than seasonal (pre-/

post-perihelion) or other effects.

3.3.3.2. Comparison to comet 21P/Giacobini-Zinner. JFC21P/Giacobini-Zinner

is the only other comet to have high-resolution near-infrared spectroscopic measurements

spanning more than one apparition. Weaver et al. (1999) detected H2O and CH3OH (with

mixing ratio 0.9%–1.4%), and Mumma et al. (2000) reported CO (10 ± 6%) and C2H6

(0.22 ± 0.13%) during the 1998 apparition. DiSanti et al. (2013) reported H2O, CH3OH

(1.22 ± 0.11%), and C2H6 (0.14 ± 0.02%) from spectra obtained during its 2005 apparition.

Mixing ratios of the two species measured both in 1998 and 2005 (CH3OH and C2H6) were

consistent in 21P/G-Z. Although these results are suggestive, the uncertainties in the 1998

measurements are relatively large, and without a more comprehensive study of its volatile

inventory, it is difficult to say whether the bulk primary volatile composition of 21P/G-

Z showed secular changes across apparitions. In contrast to 21P/G-Z, multiple species

were compared across apparitions and with small uncertainties in Encke. Fortunately, the

2018 apparition of 21P/G-Z provided an excellent opportunity to more completely and

systematically characterize its volatile composition (see Sections 3.4 and 4.1).

3.3.3.3. Hypervolatiles in Encke: CO, CH4, and C2H6. CO, CH4, and C2H6

(respectively) are the three most volatile molecules systematically observed in comets

(Dello Russo et al., 2016a). All three hypervolatiles are depleted in Encke compared with

their respective mean abundances among comets (Figure 3.11). Figure 3.12 compares these

measurements (CO/CH4 = 3.90 ± 0.51 and C2H6/CH4 = 0.34 ± 0.05) to 18 OCCs and JFCs

67P/Churyumov-Gerasimenko (Le Roy et al., 2015) and 45P/HMP (DiSanti et al., 2017).

For Encke the ratio CO/CH4 falls near the median, whereas C2H6/CH4 is near the low end;

however, C2H6/CH4 = 0.94 ± 0.29 for Encke in 2003, near the median. On the other hand,

67P/C-G has the highest CO/CH4 and C2H6/CH4 measured in any comet, although direct

comparisons between the in situ measurements of Le Roy et al. (2015) and the ground-
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Figure 3.12. Ratios of hyperovlailes in comets characterized to date in the near-infrared,
adapted from Bonev et al. (2017), and modified to include 2P/Encke (Roth et al., 2018) and
45P/HMP (DiSanti et al., 2017). Encke is highlighted as “2P”.

based line of sight (bulk coma) measurements in this work are not straightforward. Thus,

it is possible that the hypervolatile content of JFCs may span the entire range of CO/CH4

and C2H6/CH4 measured among OCCs. However, with relative hypervolatile abundances

characterized to date for only three ecliptic comets (compared to 18OCCs), it is worth noting

that these statistics are still being established for ecliptic comets, and further observations

are critically needed.

3.3.3.4. Hydrocarbon species, oxygen-bearing species, and nitrogen-bearing

species in Encke. Similarly, Encke can be compared to other comets observed at near-

infrared wavelengths by examining the ratios of chemically related hydrocarbon species

(CH4, C2H2, C2H6), oxygen-bearing species (CO, H2CO, CH3OH), and nitrogen-bearing

species (NH3, HCN). For Encke in 2017, Roth et al. (2018) reported CH4/C2H6 = 2.97
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± 0.48 and C2H2/C2H6 < 0.19, CO/CH3OH = 0.49 ± 0.06 and H2CO/CH3OH = 0.31 ±

0.05, and NH3/HCN = 5.08 ± 0.72. Figures 3.13-3.15 show these values in Encke along

with corresponding measurements in comets sampled to date in the near-infrared. All

values are taken from Dello Russo et al. (2016a) with the exception of 45P/HMP (DiSanti

et al., 2017). Figure 3.13 shows that whereas Encke was closer to the median during 2003,

in 2017 it was distinctly on the low end of hydrocarbon abundances among comets. Its

exceptionally low mixing ratios C2H6/H2O and (upper limit for) C2H2/H2O are reflected in

its high CH4/C2H6 and low C2H2/C2H6. Figure 3.14 shows that in 2017 Encke was near

the median in its oxygen-bearing species content (relative to CH3OH), yet in 2003 it was

among the lowest values in measured comets, owing largely to its enriched CH3OH. This

change in oxygen-bearing species abundances can be attributed to the significant differences

in H2CO/H2O and CH3OH/H2O between 2003 and 2017 measurements. Figure 3.15 shows

that Encke is among depleted comets in nitrogen-bearing species.

3.3.3.5. Encke in the context of the comet population. As in RD13, the 2017

apparition of Encke showed a comet that does not easily fit into a taxonomic classification.

Although no species were found to be enriched in 2017 compared to mean values among

comets, two species (H2CO and NH3) were similar to the mean, and all other species were

depleted to varying degrees. Dello Russo et al. (2016a) proposed a classification system

based on primary volatile abundances using cluster analysis. Based on its composition

as measured in 2003, Encke falls within Group B (hydrocarbon, HCN, H2CO, and CO

poor-to-typical), and is most similar to Subgroup 4 (hydrocarbon, HCN, and H2CO poor,

CH3OH typical). However, Encke does not fall into the same Group (or Subgroup) based

on the 2017 study reported in Roth et al. (2018). Rather, Encke belongs within Group

A (hydrocarbon, CH3OH, and CO poor) and is most similar to Subgroup 2 (hydrocarbon,

CH3OH, and CO poor, H2CO and HCN typical).
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Ratios of Hydrocarbon Species in Comets in the NIR
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Figure 3.13. Ratios of hydrocarbon species in comets as measured in the near-infrared
(Dello Russo et al., 2016a; DiSanti et al., 2017). Each comet is color-coded by its ratio
C2H6/H2O. Encke is highlighted with a text box, and the left-facing arrow represents the
3σ upper limit C2H2/C2H6.

Encke’s place within these groupings during each apparition is not surprising. Eclip-

tic comets (JFCs and Encke-type) are most likely to be found in Groups A and B, reflecting

the generally depleted nature of their volatile content. However, one could reasonably

expect to have found Encke in Group C based on its composition as measured in 2017.

This group is mostly populared by comets that were observed at small Rh such as Encke

(0.45–0.53 AU) or after a perihelion passage well within 1 AU. This is perhaps reflective of

the nature of volatile release at small Rh, which can originate from native ices and/or from

thermal degradation of grains (Dello Russo et al., 2016a). Perhaps Encke is an exception
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Figure 3.14. Ratios of oxygen-bearing species in comets as measured in the near-infrared.
Each comet is color-coded by its ratio CH3OH/H2O. Encke is highlighted with a text box.

to this trend due to its status as the most thermally evolved comet known, as evidenced by

its strongly depleted volatile content. Clearly, more work is needed to further improve the

evolving taxonomy based on primary volatile composition.

3.4. SUMMARY OF RESULTS FOR 2P/ENCKE AND UPCOMING OPPORTUNI-
TIES

Fluorescence emission was detected from a suite of primary volatiles (H2O, CO,

C2H6, CH3OH, CH4, H2CO, NH3, OCS, and HCN) and fragment species (OH*, NH2,

and CN) in ecliptic comet 2P/Encke, and C2H2 was stringently constrained, using the

recently commissioned iSHELL spectrograph at theNASA IRTF. The highly favorable 2017
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Encke is highlighted in red.

apparition of Encke featured sufficient geocentric velocity to permit secure detections of the

hypervolatiles CO and CH4, further laying the groundwork for establishing robust statistics

for these species in ecliptic comets. The excellent sensitivity, large spectral grasp, and unique

daytime guiding capabilities of iSHELL allowed for the first comprehensive comparison of

primary volatile composition in a comet across multiple apparitions. Dramatic differences

were observed in the mixing ratios of several primary volatiles in 2017 compared to those

reported from 2003. Possible mechanisms for these effects were discussed, including the
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possibility of distinct, chemically heterogeneous sources in the nucleus, additional sources

(e.g., dust) at small heliocentric distances, and pre-/ post-perihelion asymmetries in volatile

release.

Ground-based studies of primary volatile composition of comets are critical to

interpreting the (continually evolving) taxonomy of comets and relating measured mixing

ratios to conditions in the proto-solar nebula where and when a given comet formed. It

is yet another reminder of the extensive compositional diversity among comets in that

one short-period ecliptic comet (Encke) showed clear differences in coma composition

across apparitions, whereas another (21P/Giacobini-Zinner) may not. This reinforces the

difficulty of drawing conclusions from a single body based on limited observations during

a given apparition. Fortunately, the 2018 apparition of 21P/G-Z was favorable, and an

extensive campaign (including both pre- and post-perihelion observations) was carried

out. Additionally, the bright comet 46P/Wirtanen made a historic apparition in 2018

December, passing within 30 lunar distances of Earth near perihelion. A global, multi-

wavelength observation campaign was carried out, which will reveal the composition and

spatial distributions of volatiles in the coma of 46P/Wirtanen at more nearly mission-

scale sensitivities. These observations may shed further light on potential differences in

composition, both about perihelion and across apparitions, for ecliptic comets.

Further studies that address each of these pressing areas in cometary science (i.e.,

observations at smallRh, pre-/ post-perihelion, and comparisons acrossmultiple apparitions)

are needed to answer questions stimulated by the 2017 study of the peculiar comet 2P/Encke.
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4. PROBING THE EVOLUTIONARY HISTORY OF COMETS: AN
INVESTIGATION OF THE HYPERVOLATILES CO, CH4, AND C2H6 IN THE

JUPITER-FAMILY COMET 21P/GIACOBINI-ZINNER

4.1. COMET 21P/GIACOBINI-ZINNER

Understanding the cosmogonic record encoded in the parent volatiles stored in

cometary nuclei requires investigating whether evolution (thermal or otherwise) has modi-

fied the composition of short-period comets during successive perihelion passages. As the

most volatile molecules in comets, the abundances of CO, CH4, and C2H6 in short-period

comets may serve to elucidate the interplay between natal conditions and post-formative

evolution in setting present-day composition, yet secure measurements of CO and CH4 in

Jupiter-family comets (JFCs) are especially sparse. The highly favorable 2018 perihelion

passage of JFC 21P/Giacobini-Zinner (hereafter G-Z) featured sufficiently high geocentric

velocity simultaneously with small geocentric distance, and afforded the opportunity to

characterize its hypervolatile content. The increased sensitivity and long on-source integra-

tion times afforded by the high-resolution iSHELL spectrograph, which became available

for use at the NASA Infrared Telescope Facility in late 2016, together with unusually fa-

vorable apparitions for several short-period comets have to date enabled sensitive searches

for these molecules in short-period comets similar to G-Z, such as 2P/Encke (Roth et al.,

2018) and JFC 45P/Honda-Mrkos-Pajdus̆áková (DiSanti et al., 2017). G-Z is the prototype

for the eponymous “GZ-type” of carbon-chain depleted comets, depleted in both C2 and

NH2 with respect to H2O and accounting for ∼6% of comets measured (A’Hearn et al.,

1995; Fink, 2009). Coupled with published near-infrared observations of G-Z during the

1998 and 2005 apparitions (DiSanti et al., 2013; Mumma et al., 2000; Weaver et al., 1999),
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the measurements reported here also enabled searches for coma compositional variability

of hypervolatiles on timescales of days, both pre- vs. post-perihelion, and across multiple

perihelion passages.

During its 2018 apparition, G-Z both reached perihelion (1.01 AU) and was closest

to Earth (0.39 AU) on September 10. On UT 2018 July 25, 28, 29, and 31, September 7

and 11, and October 10, G-Z was observed with the high-resolution (λ/∆λ ∼ 40,000), near-

infrared, immersion-grating echelle spectrograph iSHELL (Rayner et al., 2012, 2016) at

the 3 m NASA IRTF to characterize its hypervolatile composition. Three iSHELL settings

(Lcustom, Lp1, andM2) were utilized so as to fully sample a suite of molecular abundances.

The slit was oriented along the projected Sun-comet line on all dates (see Table 4.1).

On July and October dates, observations were performed with a 6-pixel (0.75′′)

wide slit, using a standard ABBA nod pattern, with A and B beams symmetrically placed

about the midpoint of the 15′′ long slit and separated by half its length. A malfunction of

the iSHELL dekker precluded the use of the 15′′ long slit in September and necessitated

off-chip nodding using the 0.75′′ wide by 5′′ long slit. G-Z was placed in the center of the

slit for A frames and nodded 20′′ perpendicular to the slit for B (sky) frames. In both cases,

combining spectra of the nodded frames as A-B-B+A cancelled emissions from thermal

background, instrumental biases, and “sky” emission (lines and continuum) to second order

in air mass. Flux calibration was performed using appropriately placed bright IR flux

standard stars on each date using a wide (4.0′′) slit. On October 10, a telescope pointing

error precluded the acquisition of flux calibration sets; therefore, a flux calibration factor

(Γ, W/m2/cm-1/ADU/s) was adopted based on that measured on other dates. Although this

could affect absolute production rates, derived mixing ratios should be unaffected, as the

targeted molecules were observed simultaneously or contemporaneously with water or OH

prompt emission (OH*, a proxy for water production, see Bonev et al. (2006)) within each

setting. The observing log is shown in Table 4.1.
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Table 4.1. Observing Log for 21P/Giacobini-Zinner.

Date iSHELL UT Rh ∆ ∆dot T int Slit PA
(2018) Setting (AU) (AU) (km s-1) (minutes)
7/25 M2 12:02 – 13:58 1.20 0.64 -13.67 85 220°
7/28 Lp1 10:58 – 12:41 1.18 0.61 -13.53 92 222°

M2 13:32 – 15:44 1.18 0.61 -13.39 96
7/29 LCS 11:17 – 13:08 1.17 0.61 -13.43 100 223°

M2 13:25 – 15:23 1.17 0.61 -13.32 86
7/31 Lp1 10:42 – 12:56 1.16 0.59 -13.30 120 225°

M2 13:50 – 15:24 1.16 0.59 -13.16 74
9/7 Lp1 14:01 – 16:14 1.01 0.39 -1.89 54 270°

LCS 16:56 – 18:16 1.01 0.39 -1.61 34
9/11 Lp1 13:37 – 15:53 1.01 0.39 0.36. 66 271°
10/10 M2 13:21 – 14:23 1.10 0.51 11.16 50 276°

Lp1 14:35 – 16:58 1.10 0.51 11.32 108
Rh, ∆, and ∆dot are heliocentric distance, geocentric distance, and geocentric velocity,
respectively, of 21P/Giacobini-Zinner, and T int is total integration time on source. The
slit position angle (PA) was oriented along the projected Sun-comet line on all dates.

For the September observations (using the shorter 5′′ slit), examination of the

frames revealed that the iSHELL flat lamp provided illumination of the chip that was not

consistent with that of the sky. This introduced a curvature effect into the spectra, which was

corrected by fitting and then subtracting a polynomial baseline (Figure 4.1). This may have

affected flux calibration and therefore the calculated absolute molecular production rates

(Q’s) reported for the September dates. However, emissions from all molecules within each

individual iSHELL setting are sampled simultaneously, and therefore the derived mixing

ratios should be unaffected. The general consistency of production rates and derived

mixing ratios on both September dates suggests that any uncertainties introduced by this

illumination offset were likely minimal.
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Figure 4.1. Extracted spectra of comet G-Z showing order 155 of the iSHELL Lp filter
taken with the 5′′ long slit on UT 2018 September 11 before (left panel) and after (right
panel) baseline subtraction. The gold trace is the telluric absorption model (convolved to
the instrumental resolution).

4.2. RESULTS

Data for G-Z were analyzed using the procedures described in Section 1.6.1. Results

specific to G-Z are discussed in turn below.

4.2.1. Growth Factors. Growth factors (GF) were determined for both the gas and

the dust when signal-to-noise ratio (S/N) was sufficiently high (i.e., only for H2O, CO, and

C2H6). For September dates, the narrow 5′′ slit precluded the use of Q-curves to calculate

GFs. Therefore, a GF of 1.8 was assumed, a value consistent with that obtained from other

dates (see Tables 4.2, 4.3, 4.4).

4.2.2. Spatial Profiles. For July dates, emission spatial profiles were extracted for

H2O, CO, and C2H6 in G-Z (Figure 4.2). Figure 4.2 shows that (within uncertainty) the

spatial profiles for each molecule and dust are very similar. This suggests that emission

for all three species closely tracked that of co-measured dust; therefore, on dates for which

molecular GFs could not be well-constrained, that of co-measured dust within each setting

was adopted when calculating production rates (Tables 4.2, 4.3, 4.4).
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Figure 4.2. Coma spatial distributions of volatiles in G-Z. A. Spatial profiles of co-measured
emissions in G-Z for H2O (black), CO (orange), and dust (red) on UT 2018 July 29. The
slit was oriented along the projected Sun-comet line (position angle 223°), with the Sun-
facing direction to the left as indicated. Also shown is the Sun-comet-Earth angle (phase
angle, β) of 59°. The horizontal bar indicating 1′′ corresponds to a projected distance of
approximately 449 km at the geocentric distance of G-Z. B. Spatial profiles of co-measured
emissions for CO (orange) and dust (red) on UT 2018 July 31. C. Spatial profiles of co-
measured emissions for C2H6 (blue) and dust (red) on UT 2018 July 31. The observing
geometry on July 31 was similar to that of July 29, with a position angle of 225°and a phase
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4.2.3. Rotational Temperature. Consistent rotational temperatures for multiple

molecules were found on all dates (including H2O). The rotational temperature (T rot) for

H2O was well-constrained on September 7 (being 75 ± 3 K) and was consistent (within 1σ

uncertainty) with that for C2H6 on September 11 (66+12
−9 K). Rotational temperatures for

the July dates were also in formal agreement, being 64+15
−11 K for CO on July 28 and 48+19

−13

K for H2O on July 29. Well-constrained rotational temperatures could not be derived for

any molecules on October 10. Production rates and mixing ratios were calculated at T rot

= 48 K and 64 K for July dates. T rot was varied as a parameter for the October date, with
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production rates and mixing ratios calculated for each molecule at representative T rot = 50

K, 60 K, and 70 K. In general, mixing ratios for a given species derived at each temperature

are consistent with one another within 1σ uncertainty (Tables 4.2, 4.3, 4.4).

4.2.4. SecureDetections ofHypervolatiles. The detections of CO, CH4, andC2H6

in G-Z are particularly notable for two reasons: (1) They address the paucity of measure-

ments of CO and CH4 in ecliptic comets in general, and (2) The measurement of these

hypervolatiles in an individual ecliptic comet across multiple perihelion passages, and on

multiple dates during its 2018 apparition. Of all primary volatiles systematically measured

in comets, these three molecules are most sensitive to thermal processing, but as noted

earlier, CO and CH4 are also among the most difficult to sample from the ground due to a

lack of sensitivity and/or adequate geocentric velocity. G-Z’s excellent geocentric velocity

(|∆dot | > 13 km s-1 pre-perihelion, |∆dot | > 11 km s-1 post-perihelion) allowed firm detections

of all three species. CO and CH4 have been measured in fewer than ten ecliptic comets (with

most detections being below the 5σ level), making these measurements in G-Z a critical

component in establishing statistics for these species in ecliptic comets, and determining

the importance of natal versus evolutionary effects on present cometary volatile compo-

sition. Figures 4.3 – 4.8 show clear CO, H2O, CH4, C2H6, and OH* emissions in G-Z

superimposed on the cometary continuum during various portions of its 2018 perihelion

passage.

4.3. COMAHYPERVOLATILE COMPOSITION THROUGHOUT THE 2018 PER-
IHELION PASSAGE

The 2018 apparition of G-Z provided an opportunity to conduct the first compre-

hensive comparison of hypervolatile abundances through three perihelion passages and

on multiple dates within a given perihelion passage, thereby allowing pressing questions

in cometary science to be addressed. These include testing possible evolutionary effects

on coma volatile composition, as well as searching for coma compositional variability on
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Table 4.2. Pre-perihelion Hypervolatile Composition of Comet 21P/Giacobini-Zinner.

Setting Molecule T rot
(1) (K) GF(2) Q(3) (1025 mol s-1) Qx/QH2O (%)

2018 July 25, Rh = 1.20 AU, ∆ = 0.64 AU, ∆dot = -13.67 km s-1
M2 H2O (48) 1.82 ± 0.17(4) 2692 ± 292 100

CO (48) (1.82) 40.5 ± 5.1 1.51 ± 0.25
H2O (64) (1.82) 3028 ± 306 100
CO (64) (1.82) 47.4 ± 5.9 1.56 ± 0.25
2018 July 28, Rh = 1.18 AU, ∆ = 0.61 AU, ∆dot = -13.5 km s-1

LP1 C2H6 (48) (1.91) 6.26 ± 1.28 0.23 ± 0.05
CH4 (48) (1.91) 17.5 ± 4.2 0.63 ± 0.17
C2H6 (64) (1.91) 7.02 ± 1.33 0.24 ± 0.05
CH4 (64) (1.91) 26.1 ± 6.2 0.88 ± 0.24

M2 H2O (48) 1.91 ± 0.14(4) 2771 ± 251 100
CO (48) (1.91) 45.1 ± 3.6 1.63 ± 0.20
H2O (64) (1.91) 2961 ± 297 100
CO 64+15

−11 (1.91) 50.4 ± 4.0 1.70 ± 0.22
2018 July 29, Rh = 1.17 AU, ∆ = 0.61 AU, ∆dot = -13.3 km s-1

LCS H2O 48+19
−13 (1.97) 2643 ± 229 100

M2 H2O (48) (1.97) 2527 ± 345 100
CO (48) 1.97 ± 0.214 34.8 ± 4.7 1.38 ± 0.26
H2O (64) (1.97) 2726 ± 369 100
CO (64) (1.97) 41.2 ± 4.4 1.51 ± 0.26
2018 July 31, Rh = 1.16 AU, ∆ = 0.59 AU, ∆dot = -13.2 km s-1

LP1 C2H6 (48) (1.66) 6.05 ± 0.77 0.24 ± 0.05
CH4 (48) (1.66) 28.1 ± 4.1 1.12 ± 0.26
C2H6 (64) (1.66) 6.64 ± 0.92 0.24 ± 0.05
CH4 (64) (1.66) 41.4 ± 6.0 1.52 ± 0.31

M2 H2O (48) (1.66) 2503 ± 365 100
CO (48) 1.66 ± 0.22 50.1 ± 4.9 2.00 ± 0.36
H2O (64) (1.66) 2716 ± 262 100
CO (64) (1.66) 58.6 ± 4.8 2.15 ± 0.27

1 Rotational temperature. Values in parentheses are assumed.
2 Continuum growth factor. Values in parentheses are assumed.
3 Global production rate. Errors in production rate include line-by-line deviation between
modeled and observed intensities and photon noise (see Bonev (2005); Bonev et al.
(2007); Dello Russo et al. (2004)).

multiple timescales, including day-to-day, pre- vs. post-perihelion, and across perihelion

passages. Each of these topics is discussed below in turn. Unless otherwise noted, all dates

refer to the 2018 apparition.
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Table 4.3. Perihelion Hypervolatile Composition of Comet 21P/Giacobini-Zinner.

Setting Molecule T rot
(1) (K) GF(2) Q(3) (1025 mol s-1) Qx/QH2O (%)

2018 September 7, Rh = 1.01 AU, ∆ = 0.39 AU, ∆dot = -1.7 km s-1
LP1 C2H6 (75) (1.8)4 10.6 ± 1.1 0.35 ± 0.06

OH* (75) (1.8)4 3036 ± 357 100
LCS H2O 75 ± 3 (1.8)4 3206 ± 112 100

2018 September 11, Rh = 1.01 AU, ∆ = 0.47 AU, ∆dot = 0.3 km s-1
LP1 C2H6 64+12

−9 (1.8)4 7.15 ± 0.39 0.26 ± 0.02
C2H6 (75) (1.8)4 7.49 ± 0.43 0.28 ± 0.02
OH* (75) (1.8)4 2713 ± 168 100

1 Rotational temperature. Values in parentheses are assumed.
2 Growth factor. Values in parentheses are assumed.
3 Global production rate. Errors in production rate include line-by-line deviation between
modeled and observed intensities and photon noise (see Bonev (2005); Bonev et al.
(2007); Dello Russo et al. (2004)).

4 A growth factor for September dates could not be derived owing to use of the 5′′ wide
slit; therefore, a GF of 1.8, consistent with growth factors derived for major species pre-
and post-perihelion, was assumed.
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Figure 4.3. Extracted spectra showing clear detections of CO and H2O in comet G-Z on
UT 2018 July 28.
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Table 4.4. Post-perihelion Hypervolatile Composition of Comet 21P/Giacobini-Zinner.

Setting Molecule T rot
(1) (K) GF(2) Q(3) (1025 mol s-1) Qx/QH2O (%)

2018 October 11, Rh = 1.10 AU, ∆ = 0.51 AU, ∆dot = 11.1 km s-1
M2 H2O (50) 1.93 ± 0.284 2054 ± 257 100

CO (50) (1.93) 22.9 ± 2.9 1.11 ± 0.20
H2O (60) (1.93) 2029 ± 253 100
CO (60) (1.93) 25.5 ± 3.3 1.26 ± 0.23
H2O (70) (1.93) 2028 ± 252 100
CO (70) (1.93) 28.1 ± 3.2 1.39 ± 0.25

LP1 C2H6 (50) (1.93) 2.65 ± 0.42 0.13 ± 0.03
CH4 (50) (1.93) < 10 (3σ) < 0.55 (3σ)
C2H6 (60) (1.93) 2.92 ± 0.39 0.14 ± 0.03
CH4 (60) (1.93) < 13 (3σ) < 0.72 (3σ)
C2H6 (70) (1.93) 3.20 ± 0.41 0.16 ± 0.03
CH4 (70) (1.93) < 16 (3σ) < 0.89 (3σ)

1 Rotational temperature. Values in parentheses are assumed.
2 Growth factor. Values in parentheses are assumed.
3 Global production rate. Errors in production rate include line-by-line deviation between
modeled and observed intensities and photon noise (see Bonev (2005); Bonev et al.
(2007); Dello Russo et al. (2004)).

4 Continuum (dust) growth factor.

4.3.1. CO. Clear, simultaneously measured detections of CO and H2O were found

on multiple dates in G-Z (Figures 4.3, 4.7) pre- as well as post-perihelion. The mixing ratio

CO/H2O was consistent on all pre-perihelion July dates within 1σ uncertainty (Table 4.2;

see also Figure 4.9) with a weighted average abundance of 1.72 ± 0.12% for T rot = 64

K. This was somewhat lower post-perihelion in October, 1.26 ± 0.23% for T rot = 60 K,

suggesting that CO/H2O in G-Z may display pre- vs. post-perihelion asymmetry. However,

given the uncertainty in T rot in October, it is important to note that the range of possible

October CO mixing ratios is in formal agreement with those from July (Tables 4.2, 4.4).

These mixing ratios are depleted with respect to the mean for all comets measured to date

at near-infrared wavelengths (5.1 ± 1.3%), but are consistent with the few measurements in

ecliptic comets (Dello Russo et al., 2019, 2016a; DiSanti et al., 2017; Roth et al., 2018).
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Figure 4.4. Extracted spectra showing detections of CO and H2O on UT 2018 July 28.

4.3.2. CH4. CH4 bears the distinction of being the most severely undersampled

hypervolatile in ecliptic comets, having beenfirmlymeasured in only six to date (DelloRusso

et al. (2016a) and refs. therein, Dello Russo et al. (2019); DiSanti et al. (2017); Roth et al.

(2018)). Utilizing the large spectral grasp of iSHELL, CH4 was measured in G-Z at the 4σ

level on July 28 (0.88 ± 0.24% for T rot = 64 K; see Figure 4.5 and Table 4.2) and at >6σ

on July 31 (1.52 ± 0.31% for T rot = 64 K). A sensitive (3σ) upper limit was derived for

October 10 (< 0.72% for T rot = 60 K). This suggests that CH4 may have been variable from

day-to-day in G-Z. However, there are important caveats for this CH4 study.

A well-constrained rotational temperature for CH4 could not be derived, and calcu-

lated CH4 production rates and mixing ratios show a sensitive dependence on assumed T rot

(Tables 4.2, 4.4). Assuming T rot = 48 K, pre-perihelion CH4 mixing ratios in G-Z (0.63 ±

0.17% for July 28, 1.12 ± 0.26% for July 31; Table 4.2) are consistent with mean values

in measured OCCs (0.88 ± 0.10%), and are enriched compared to the few measurements
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Figure 4.5. Extracted spectra showing detections of CH4, C2H6, CH3OH, and OH* on UT
2018 July 31. The zoomed subplots highlight the locations of individual CH4 emissions.
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in JFCs. For T rot = 64 K, the degree of CH4-enrichment increases. However, G-Z is not

the first instance of a CH4-enriched JFC, with similar mixing ratios reported in 45P/Honda-

Mrkos-Pajdus̆áková (Dello Russo et al., 2019; DiSanti et al., 2017). The (3σ) upper limit

for October 10 is similarly sensitive to assumed T rot (Table 4.4), but is consistent with the

July measurements assuming T rot ≥ 60 K, a reasonable assumption given the rotational

temperatures measured in July and September for other molecules at similar Rh.

Additionally, an emission spatial profile for CH4 could not be extracted due to

low S/N along the slit; therefore, GFs measured from other species (or co-measured dust)

within a given date were assumed for CH4 in order to calculate global production rates. It

is possible that CH4 outgassing differed day-to-day from that for H2O, CO, or co-measured
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dust, and that the suggested variability may be due the assumed CH4 GFs. That being said,

no unusual outgassing patterns were found among the other molecules or dust relative to

one another in G-Z, so the assumed GF for CH4 should be reasonable.

Finally, OH prompt emission (OH*, see Bonev et al. (2006)) was weak in G-Z

for July and October dates, and was only firmly detected in September. We therefore

calculated mixing ratios using Q(H2O) obtained from the M2 setting on the same date.

The inter-setting calibration uncertainty introduced is estimated to be ∼10%, and has been

incorporated into the reported uncertainty in the mixing ratios. Use of contemporaneously

(but not simultaneously) measured Q(H2O) for CH4 abundances in July and October may

also account for some of the spread in abundances from date-to-date. However, the formal

agreement between Q(H2O) obtained from both OH* (in Lp1) and H2O (in Lcustom) on

September 7 (Table 4.3) argues against both a systematic difference in retrieving water
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production rates in these two ways, and also against short-term variations in Q(H2O) in

G-Z. Clearly, further measurements of G-Z are necessary to clarify the possible variability

of its coma CH4 content.

4.3.3. C2H6. Of all the hypervolatiles, C2H6 is the most routinely sampled in

comets owing to its intrinsically strong near-infrared transitions and the availability of

multiple lines in regions of favorable telluric transmittance independent of ∆dot. This

enabled measuring C2H6 mixing ratios on multiple dates during G-Z’s 2018 apparition,

including pre-perihelion, near perihelion, and post-perihelion. Similar to CO, C2H6 mixing

ratios were consistent (within uncertainties) pre-perihelion (weighted average 0.24 ± 0.03%

for T rot = 64K) and additionally near perihelion (weighted average 0.29± 0.02%). However,

C2H6 was lower post-perihelion with mixing ratio 0.14 ± 0.03% (assuming T rot = 60 K).

Compared to ecliptic comets measured to date, G-Z was consistent with mean mixing

ratios for C2H6 (0.34 ± 0.07%) pre-perihelion and near perihelion, but was depleted post-

perihelion (severely depleted compared to themean for all comets measured (0.55± 0.08%),

including ecliptic comets). In the same manner as CH4, the use of Q(H2O) from H2O in the

M2 setting rather than from OH* in the Lp1 setting to calculate C2H6 mixing ratios in July

and October may have contributed to its suggested variability. However, it is important to

note thatQ(H2O)was dramatically lower inOctober comparedwith both July and September

dates, being closer to 2 x 1028 than 3 x 1028 molecules s-1, consistent with asymmetry in

water production with respect to perihelion found by A’Hearn et al. (1995). This in turn

could indicate distinct active regions dominating activity in G-Z at these times, and that its

chemical composition (at least in terms of CH4/H2O and C2H6/H2O) may also be different

on October 10 compared with the pre-/near-perihelion dates.
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4.4. COMPARISON WITH PREVIOUS PERIHELION PASSAGES AND OTHER
COMETS MEASURED

Understanding the implications of the hypervolatile content of G-Z during its 2018

passage, as well as potential variability, requires comparing to published measurements of

G-Z from previous perihelion passages, as well as placing G-Z into the context of the comet

population measured to date. Each of these is discussed below.

4.4.1. Comparison with Previous Perihelion Passages. G-Z is the only comet

surveyed at near-infrared wavelengths during three different perihelion passages: 1998

(Mumma et al., 2000;Weaver et al., 1999), 2005 (DiSanti et al., 2013), and 2018 (Roth et al.,

2019), and is just the second comet to have a comprehensive comparison of hypervolatile

abundances across apparitions (the other being 2P/Encke; see Radeva et al. (2013); Roth

et al. (2018)). Figure 4.9 shows hypervolatile abundances in G-Z for all three perihelion

passages, including measurements for each species by date in 2018. Table 4.5 gives a

similar comparison numerically. Figure 4.9 and Table 4.5 suggest that each hypervolatile

may display at least some degree of variability, whether across perihelion passages or within

a particular apparition. Each species will be discussed in turn.

4.4.1.1. CO. In the case of CO, pre- and post-perihelionmixing ratios are consistent

with (but lower than) the upper limit from the 1998 apparition (using CSHELL) found by

Weaver et al. (1999), but are considerably lower than the mixing ratio reported by Mumma

et al. (2000) from observations conducted approximately three weeks earlier. However,

Mumma et al. (2000) did not detect H2O, even though the strong line near 2151 cm-1 (as

shown in Figure 4.4) was encompassed together with the CO R0 and R1 lines in the same

CSHELL setting. Instead, their value for CO/H2O was inferred from the measured CO

abundance relative to C2H6 (detected at the ∼ 5σ confidence level), and an adopted (1.9σ)

value for Q(H2O) based on residual flux at the Doppler-shifted frequency of the 2151 cm-1



69

Table 4.5. Hypervolatile Abundances in 21P/Giacobini-Zinner Across Apparitions(1).

Year Molecule Pre-perihelion Perihelion Post-Perihelion
1998 CO < 3.2(2) 10 ± 6(3) – –

C2H6 < 0.08(2) 0.22 ± 0.13(3) – –
2005(4) C2H6 0.14 ± 0.02 – –
2018(5) CO 1.72 ± 0.12 – 1.26 ± 0.23

CH4 0.63 – 1.52 – <0.55 – <0.89
C2H6 0.24 ± 0.04 0.29 ± 0.02 0.14 ± 0.03

Mean among Comets Measured(6) Range in Comets(7)
CO 6.1 ± 1.6 (19) 0.30 – 2.6
CH4 0.88 ± 0.10 (19) 0.11 – 1.6
C2H6 0.55 ± 0.08 (27) 0.037 – 1.9
1 Upper limits for non-detected species are 3σ. In all cases values are expressed as %
relative to H2O.

2 Abundances taken from Weaver et al. (1999).
3 Abundances taken from Mumma et al. (2000).
4 Abundances taken from DiSanti et al. (2013).
5 This work. Abundances for CO and C2H6 are given as weighted averages for molecules
detected on multiple dates, assuming T rot = 64 K for pre-perihelion values, T rot = 75 K
for perihelion values, and T rot = 60 K for post-perihelion values. Owing to its sensitive
dependence on T rot, the mixing ratio for CH4 is given as a range based on the values in
Tables 4.2 and 4.4.

6 Mean values and 1σ uncertainties among measured comets taken from Dello Russo
et al. (2016a). The number of measurements used to calculate the mean is given in
parentheses. Mean values for CO and CH4 are given for OCCs only owing to the
extreme paucity of such measurements in JFCs, whereas the mean for C2H6 is given for
all comets measured (JFCs and OCCs).

7 Range among comets measured after Dello Russo et al. (2019, 2016a); DiSanti et al.
(2017); Faggi et al. (2018); Roth et al. (2018, 2017)

line. In any case, results obtained to date suggest that the abundance ratio of CO in G-Z

may display variability, both during a single apparition (as is also suggested by the 2018

measurements) and across multiple apparitions.

It is important to note that the 1998 measurements of G-Z with CSHELL – the

small spectral grasp of which precluded measuring H2O simultaneously with CH4 or C2H6

– introduced uncertainties due to inter-setting calibration in addition to potential temporal
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Figure 4.9. Comparison of mixing ratios (%, relative to H2O) of hypervolatiles sampled in
G-Z during the 1998 (purple, Weaver et al. (1999); orange, Mumma et al. (2000)), 2005
(pink, DiSanti et al. (2013)), and 2018 (green, yellow, cyan, Roth et al. (2019)) perihelion
passages, as well as near-infrared measurements of each volatile in OCCs to date (blue), in
ecliptic comets to date (red), and the respective mean values for CO and CH4 among OCCs
and for C2H6 among all comets (black, Dello Russo et al. (2019, 2016a); DiSanti et al.
(2017); Faggi et al. (2018); Roth et al. (2018, 2017). Error bars indicate measurements,
whereas downward arrows indicate 3σ upper limits.

variations in production rates. In contrast, the large spectral grasp of iSHELL enabled

simultaneous measurements of all three hypervolatiles with either H2O or OH* during the

2018 perihelion passage of G-Z.

In the context of preserving natal solar system signatures in the nucleus ices of JFCs,

it is important to note the stark contrast of the 2018 CO measurements along with those

reported by Weaver et al. (1999) compared to those of Mumma et al. (2000). The CO/H2O

mixing ratio inferred by Mumma et al. (2000) (10 ± 6%) places G-Z as the only known
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CO-enriched JFC to date. If G-Z were indeed so enriched in CO, it would have profound

implications for the origins and evolutionary processing history of JFCs. However, as

mentioned previously this is based on an extremely tentative “detection” (< 2σ) of H2O.

Nonetheless, the 2018 measurements do not support this conclusion, and instead indicate

that G-Z has a CO abundance that is similar compared to the few measurements in ecliptic

comets, and is depleted when compared to all comets measured.

4.4.1.2. CH4. CH4 has not been reported previously in G-Z – for both the 1998

and 2005 observations |∆dot | < 10 km s-1, thereby precluding its measure – but the results

reported here indicate that it may have been variable on timescales of days to months in

2018. However, as previously noted, there are important caveats regarding its purported

variability. In any case, these measurements indicate that G-Z is consistent-to-enriched

compared to the mean CH4 abundance for all comets measured.

4.4.1.3. C2H6. TheC2H6mixing ratios obtained pre-perihelion and near perihelion

in 2018 were consistent with that found by Mumma et al. (2000), but were considerably

enriched compared to the upper limit reported by Weaver et al. (1999), as well as compared

to the measurement from 2005 (0.14% DiSanti et al. (2013)). However, the post-perihelion

measurement for C2H6 on October 10 was considerably lower (by approximately a factor

of 2) than earlier 2018 dates, yet consistent with the 2005 pre-perihelion value, suggesting

possible short-term (i.e., “diurnal”, perhaps associated with nucleus rotation, or seasonal,

such as that seen by Rosetta at 67P/Churyumov-Gerasimenko; see Section 4.4.2) variability

in its C2H6 abundance ratio when compared with pre-perihelion results. It is important to

note that the possible variability in C2H6 within the 2018 G-Z measurements (as well as

those from previous perihelion passages) is small compared to the overall spread of C2H6

abundances in all comets measured (Figure 4.9).

4.4.2. Discussion of Possible Variability of Coma Hypervolatile Abundances

in G-Z. Combined with previous work, the 2018 results suggest that coma hypervolatile

abundances in G-Z may be variable. At 67P/Churyumov-Gerasimenko, the Rosetta mission
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found that nucleus shape and the location of active areas, combined with seasonal and

rotational illumination effects, resulted in coma compositional variability on a variety of

timescales. Hässig et al. (2015) found long-term variation in the coma abundances of CO

and CO2 due to seasonal illumination effects; furthermore, other species (such as CH4)

varied on smaller timescales, showing diurnal variations that differed from those of other

volatiles, such as CO and C2H6 (Bockelée-Morvan et al., 2016; Fink et al., 2016; Luspay-

Kuti et al., 2015). Similar effects may have contributed to the suggested coma hypervolatile

variability in G-Z. Unfortunately, the ground-basedmeasurements reported here do not have

sufficient spatial resolution to determine whether this was the case.

To further examine the nature of the suggested variability in G-Z, the evolution

of molecular production rates for each species reported here during the 2018 apparition

was evaluated. Figure 4.10 shows the production rate of each species relative to peri-

helion (September 10). The measurements for all four species (H2O,CO, CH4, C2H6)

agree with A’Hearn et al. (1995), who found that G-Z was more active pre-perihelion than

post-perihelion. However, these results indicate that the relative asymmetry in molecular

production is shaper for the trace species than for H2O, which is reflected in the general de-

pletion of their post-perihelion mixing ratios compared to pre-perihelion values (Figure 4.9,

Table 4.5.

In order to test whether the possible variability indicated by the 2018 results is

owing to the activity of H2O vs. that of the trace species in G-Z, the ratios CO/C2H6

were compared. CO/C2H6 was found to be consistent within uncertainties pre- vs. post-

perihelion, being 7.18 ± 2.14 on July 28, 8.82 ± 1.69 on July 31, and 8.75 ± 1.85 on October

10 (assuming T rot = 64 K for July and 60 K for October). Combined with results shown

in Figures 4.9 and 4.10, this suggests that although CO and C2H6 were consistent relative

to one another throughout the 2018 perihelion passage, their contributions to the volatile

content of the coma were not, as evidenced by their steeper variation about perihelion than

H2O.
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Figure 4.10. Evolution of molecular production in G-Z throughout the 2018 perihelion
passage for H2O (left panel) and CO, CH4, and C2H6 (right panel) with respect to perihelion
(UT 2018 September 10). Error bars indicate measurements, whereas downward arrows
indicate 3σ upper limits.

If G-Z is indeed variable, it is not the first such comet reported in the literature.

As the number of serial measurements (i.e., both within and across perihelion passages)

of primary volatiles in ecliptic comets increases, the number of reports of variability on

multiple timescales has similarly increased (e.g., Dello Russo et al. (2019); Fink et al.

(2016); Roth et al. (2018); Bodewits et al. (2014); DiSanti et al. (2016); Feaga et al. (2014);

McKay et al. (2015)), with explanations ranging from diurnal variations in outgassing, to

seasonal illumination effects, to chemically heterogeneous nuclei. Understanding whether

such variations are common or rare phenomena and how to account for them during analysis

is crucial to placing the results of present-day primary volatile measurements in cometary

comae into the framework of solar system formation theories.
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It is important to note that the variability suggested by themeasurements in Table 4.5

cannot explain the variation in each molecule among comets revealed in measurements to

date (Figure 4.9). If the range of volatile abundances observed among all comets can

be reproduced by time-resolved measurements of one comet, it would seriously call into

question whether the chemical diversity among the population is cosmogonic. Alterna-

tively, a comet such as G-Z, in which measurements over three perihelion passages suggest

(with carefully explored caveats) that the abundances of CO/H2O and C2H6/H2O vary on

scales much smaller than the comet-to-comet range, may serve as evidence that cosmogo-

nic signatures are indeed being sampled in present-day measurements of parent volatiles

in short-period comets. Further unraveling the complex relationship between nascent solar

system conditions and evolutionary processes in comets clearly requires increasing the sam-

ple size of serial measurements in short-period comets, particularly observations targeting

the hypervolatiles.

4.5. COMPARISONWITH OTHER COMETS MEASURED

Comprehensive hypervolatile abundances have been securely measured in 19 OCCs

to date, yet in only four ecliptic comets, includingG-Z. This highlights that statistics for these

species in ecliptic comets (particularly CO and CH4) are far from being firmly established.

Figure 4.11 shows relative hypervolatile abundances reported in all comets to date, including

G-Z and in-situ measurements taken by Rosetta at 67P/Churyumov-Gerasimenko using

ROSINA measurements of C2H6 (Le Roy et al., 2015), MIRO measurements of CO (Biver

et al., 2019), and VIRTIS measurements of CH4 (Bockelée-Morvan et al., 2016). The

particularly low C2H6/CH4 ratio in G-Z (#22-24) is supported by observations at other

wavelengths. Kiselev et al. (2000) reported a blueish linear polarization spectrum for

continuum in G-Z at optical wavelengths, and suggested this was caused by the presence

of organic grains (or large-sized complex organics). This implies that G-Z is depleted in

simple organics, such as C2H6, but enriched in more complex organics, which may indicate
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Figure 4.11. Ratios of hypervolatiles in comets characterized to date, including comets G-Z
(Roth et al., 2019), 67P/Churyumov-Gerasimenko (Biver et al., 2019; Bockelée-Morvan
et al., 2016; Le Roy et al., 2015), 45P/Honda-Mrkos-Pajdus̆áková (DiSanti et al., 2017),
C/2006 W3 (Christensen) (Bonev et al., 2017), C/2012 K1 (PanSTARRS) (Roth et al.,
2017), C/2017 E4 (Lovejoy) (Faggi et al., 2018), 2P/Encke (Roth et al., 2018), and 16
OCCs (after Dello Russo et al. (2016a)). Values for G-Z were taken from each of the
three dates for which all three hypervolatiles were sampled, and assuming T rot = 64 K
for July dates and T rot = 60 K for October 10. For the October date, the downward- and
leftward-facing arrows indicate the (3σ) upper limits CO/CH4 and C2H6/CH4. Owing to
the sensitive dependence of Q(CH4) on assumed T rot, the red oval traces the total possible
spread in G-Z’s hypervolatile content for the range T rot = 48 – 70 K. Each comet is color-
coded by its mixing ratio CO/H2O. 1 Values for 67P using C2H6/H2O as reported in Le Roy
et al. (2015) for the northern hemisphere. 2 Values for 67P using C2H6/H2O as reported in
Le Roy et al. (2015) for the southern hemisphere. In both cases, the blue ovals trace the
total possible spread in 67P’s hypervolatile content.

warmer conditions were present during the formation and subsequent evolution of G-Z’s

constituent ices. The low measured C2H6/CH4 supports this hypothesis, and together with

the observed blueish polarization, may indicate that simple hydrocarbons were efficiently

converted into more complex organics in G-Z.
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It is apparent from Figure 4.11 that hypervolatile abundances among OCCs span a

large range of values. Similarly, as the hypervolatile abundances of more ecliptic comets

are completely characterized, it appears that they may span the same range of CO/CH4 and

C2H6/CH4 as observed in OCCs, from severely depleted (45P/Honda-Mrkos-Pajdus̆áková,

#20 in Figure 4.11; DiSanti et al. (2017)) to near-mean values (2P/Encke, #10; Roth

et al. (2018)) to the (possibly) enriched values measured in 67P/Churyumov-Gerasimenko

(Biver et al., 2019; Bockelée-Morvan et al., 2016; Le Roy et al., 2015). It is important to

note that comparisons between the in-situ measurements of Le Roy et al. (2015) and bulk

coma measurements (e.g., Biver et al. (2019); Bockelée-Morvan et al. (2016); Roth et al.

(2019)) are not straightforward, particularly given the differences in Rh between each set of

measurements.

The relative isolation of G-Z on the graph further highlights the spread in hy-

pervolatile abundances among ecliptic comets, reflecting its unique combinations of CH4

being consistent with the mean for OCCs versus the moderately depleted values for CO

and C2H6. This underscores that much work remains in firmly characterizing the ranges

of hypervolatile abundances in ecliptic comets and understanding their implications for

placing such measurements into a meaningful context.

4.6. SUMMARY OF RESULTS FOR 21P/GIACOBINI-ZINNER

The hypervolatile composition of the prototypical “GZ-type” comet 21P/Giacobini-

Zinner was characterized with the powerful, recently commissioned iSHELL spectrograph

at theNASA-IRTF on four dates pre-perihelion, two dates near perihelion, and one date post-

perihelion. Combined with previous work, the results suggest that coma abundances of all

three hypervolatiles (CO, CH4, and C2H6) may be variable on several timescales, including

day-to-day, pre- vs. post-perihelion, and even across perihelion passages. However, as noted
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in Section 4.3, there are important caveats to this study, and additional serial measurements

of G-Z are needed to confirm possible variability in its coma hypervolatile content. In any

case, the results reported here suggest that:

1. Mixing ratios of CO were consistent (within uncertainty) day-to-day pre-perihelion,

but were slightly lower post-perihelion. These measurements are consistent with

depleted values in comets measured, as well as with an upper limit derived from the

1998 perihelion passage (Weaver et al., 1999).

2. The measurements of CH4, the most severely underrepresented hypervolatile in stud-

ies of ecliptic comets, represent its first reported values in G-Z. CH4 abundances were

consistent with mean values among all comets measured, and may have been variable

from day-to-day. However, there are important caveats to the possible variability of

CH4 in G-Z (Section 4.3).

3. C2H6 was found to decrease significantly pre- vs. post-perihelion, and its post-

perihelion value was consistent with being depleted. The pre-perihelion C2H6 mixing

ratios were enriched compared to measurements during the same seasonal phase in

2005 (DiSanti et al., 2013), yet the post-perihelion mixing ratio was consistent with

the results from 2005.

4. If G-Z is indeed variable, the spread between the measurements reported here, as well

as between those from previous perihelion passages, is significantly smaller than the

variation in each molecule among all comets measured (Figure 4.9). This may be

evidence that natal conditions dominate over evolutionary effects due to successive

perihelion passages in setting the composition of short-period comets.

Understanding the cause(s) of the considerable spread in hypervolatile abundances

seen in Figure 4.11 is necessary to disentangle primordial from evolutionary effects in setting

the present-day (observed) abundances of hypervolatiles (and of primary volatiles in general)
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in comets. On the one hand, chemical models of protoplanetary disks (e.g., Drozdovskaya

et al. (2016); Willacy et al. (2015)) predict that comets incorporated a wide range of

hypervolatile abundances from their formation region(s) in the protosolar nebula. On the

other hand, the nontrivial effects of heterogeneous outgassing and seasonal illumination on

coma composition, such as that seen by Rosetta at 67P (i.e., Bockelée-Morvan et al. (2016);

Feldman et al. (2018); Fougere et al. (2016a,b); Hässig et al. (2015); Luspay-Kuti et al.

(2015)), cannot be overlooked. This emphasizes the high impact of serial observations of

comets, particularly those targeting hypervolatiles in ecliptic comets, which may be most

indicative of the role that primordial vs. evolutionary effects play in setting the composition

of comets. Thankfully, the availability of next-generation instruments such as iSHELL,

capable of delivering the long on-source integration times and excellent sensitivity required

for such measurements, is enabling a better understanding of the interplay between nascent

solar system conditions, evolutionary processing, and coma compositional variability when

interpreting the results of primary volatile studies in comets.
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5. A SUMMARY OF THIS WORK AND A LOOK TO THE FUTURE OF
COMETARY SCIENCE

5.1. MAJOR SCIENCE GOALS ADDRESSED BY THIS DISSERTATION

This dissertation is comprised of the results of six observing programs spread over

5 years. These results have either been published (Roth et al., 2018, 2017) or submitted

for publication (Roth et al., 2019) in peer-reviewed academic journals. This section will

identify the major science goals addressed in each work and place these goals into the

context of cometary science at the time of their undertaking, as well as give an overview of

future work and opportunities in the field.

5.1.1. The Composition of Comet C/2012 K1 (PanSTARRS) and the Distribu-

tion of Primary Volatile Abundances Among Comets. Roth et al. (2017) was written

and published during an exciting, yet challenging time in recent cometary science. The

number of comets characterized with near-infrared spectroscopy had recently reached 30,

and unexpected results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko

were appearing in earnest in the literature. The paradigm in studies of primary volatiles

at near-infrared wavelengths was that the primary volatile composition of the coma at any

given time could be used to infer the native composition of the nucleus, which in turn

could be tied to nascent solar system conditions. Yet as detailed in this dissertation, the

Rosetta spacecraft found a comet whose primary volatile composition varied on multiple

time scales.

Furthermore, cometswere classified based on their primary volatile content as“organics-

enriched”,“organics-normal”, or “organics-depleted” (Mumma and Charnley, 2011). Yet

as the number of comets measured increased, so did the number of “atypical” comets:

those which were enriched in some primary volatiles, normal in others, and depleted in the

rest. These comets could not be accommodated by any of the proposed taxonomic classes.
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Furthermore, the definition of enriched, average, or depleted was a frequently changing

goalpost, with taxonomic classes defined by arbitrary cutoffs based on comets measured to

date (Dello Russo et al., 2016a). With each new comet characterized, mean abundances in

the measured population changed, and hence the bounds of taxonomic classes.

Roth et al. (2017) found that comet C/2012 K1 (PanSTARRS) was another example

of an “atypical” comet: enriched for CH3OH and C2H6, depleted for H2CO, CH4, and

possibly C2H2, yet consistent with normal for CO and HCN. To place the primary volatile

content of “atypical” comets such as C/2012 K1 (PanSTARRS) into the framework of

probing solar system formation conditions, Roth et al. (2017) examined the nature of

abundances for individual volatiles in comets measured to date rather than all volatiles

simultaneously. They found that results to date suggested that well-sampled volatiles (such

as HCN) formed a continuous distribution of abundances among the comet population

(Figure 2.7). In the case of C2H6, a volatile that was well-sampled yet still showed a gap

between “normal” and “enriched”, the C2H6 abundance of C/2012 K1 (PanSTARRS) filled

in this gap and suggested a continuous distribution of C2H6 abundances among comets.

This in turn suggested that other volatiles that were either well-sampled but with “gaps”

(e.g., CH3OH) or under-sampled (e.g., CH4) may also display a continuous distribution of

abundances among the population as more comets are characterized.

5.1.2. A Tale of “Two” Comets: The Primary Volatile Composition of Comet

2P/EnckeAcrossApparitions and Implications forCometaryScience. Roth et al. (2018)

reported the results of early comet observations with the new near-infrared spectrograph

iSHELL at the NASA-IRTF after its commissioning in December 2016. These observations

came during the midst of a 3-year period from 2016-2018 which featured unusually favor-

able apparitions of multiple short-period comets, including 2P/Encke, 45P/Honda-Mrkos-

Pajdus̆áková, 41P/Tuttle-Giacobini-Kresak, 21P/Giacobini-Zinner, and 46P/Wirtanen. Each

of these comets made perihelion passages featuring small geocentric distance simultane-

ously with high geocentric velocity, and in several cases, small heliocentric distance. These
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circumstances represented rare observational occurrences for ecliptic comets: 2P/Encke

will not make a similar apparition until 2026, and 46P/Wirtanen will not make as favorable

of an apparition for at least another 75 years. As detailed in Sections 3 and 4, this presented

an outstanding and timely opportunity to address pressing questions in cometary science

regarding the properties of ecliptic comets.

Roth et al. (2018) capitalized on these favorable circumstances to make the first

comprehensive comparison of primary volatile abundances in a comet across multiple ap-

paritions, as well as to secure measurements of the hypervolatiles CO and CH4, whose

abundances are severely underrepresented in studies of short-period comets. These mea-

surements revealed yet another “atypical” comet, including the most severely depleted C2H6

in a comet observed to date, yet HCN and H2CO consistent with normal. Furthermore,

Roth et al. (2018) found dramatic changes in the primary volatile content of 2P/Encke’s

coma in 2017 compared to measurements from the 2003 perihelion passage (Radeva et al.,

2013), and reinforced the findings of the Rosetta mission that coma composition may vary

in comets on several timescales. This highlighted the importance of serial measurements

of comets, which have become increasingly feasible owing to the capabilities of newer ad-

vanced instruments, such as iSHELL. Furthermore, these measurements provided just the

third complete hypervolatile inventory for an ecliptic comet, and contributed to establishing

statistics for these species in this important comet subclass. As noted earlier, understanding

hypervolatile abundances in ecliptic comets may provide a path for disentangling natal

conditions from evolutionary processes in setting the present-day volatile composition of

short-period comets (Dello Russo et al., 2016a).

5.1.3. Probing the Evolutionary History of Comets: An Investigation of the

HypervolatilesCO,CH4, andC2H6 in the Jupiter-familyComet 21P/Giacobini-Zinner.

With its 2018 perihelion passage being themost favorable in the last 35 years, 21P/Giacobini-

Zinner presented an opportunity to build on the results found by Roth et al. (2018) in

2P/Encke. 21P/Giacobini-Zinner had been observed in two previous perihelion passages
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(DiSanti et al., 2013; Mumma et al., 2000; Weaver et al., 1999), but these observations

resulted in limited primary volatile inventories. With the availability of iSHELL, Roth et al.

(2019) were able to conduct a comprehensive hypervolatile inventory of 21P/Giacobini-

Zinner throughout its 2018 apparition, representing the first instance of primary volatile

measurements of a given comet across three apparitions, as well as providing the fourth

complete hypervolatile catalog of an ecliptic comet. Roth et al. (2019) found a comet

depleted in CO and C2H6, yet with average-to-enriched CH4. Additionally, these results

indicated that the coma hypervolatile composition of 21P/Giacobini-Zinner may have been

variable on multiple timescales, including from day-to-day, pre- vs. post-perihelion, and

even across apparitions. However, the variation between these measurements (as well as

between those from previous apparitions) was a fraction of the spread in each hypervolatile

revealed among the comet population by measurements to date. As detailed in Section 4,

this suggests that natal conditions may dominate over evolutionary effects due to repeated

(and frequent) perihelion passages in setting present-day primary volatile composition, and

represented an important step in determining the degree to which primary volatile studies

in comets are sampling cosmogonic signatures.

5.2. THE NEXT GENERATION OF COMETARY ASTRONOMY

The combination of new/upgraded and upcoming state-of-the-art instruments, such

as the Atacama Large Millimeter/Submillimeter Array (ALMA), iSHELL, NIRSPEC-2,

and the James Webb Space Telescope (JWST) is enabling the next generation of cometary

astronomy. These facilities are enabling searches for novel and less-understood behaviors

in comets, such as compositional variability and small Rh studies (iSHELL), the detec-

tion and mapping of complex organics and tests of isotopic ratios in moderately bright

comets (ALMA), and testing coma composition and spatial associations with unprece-
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dented sensitivity and at large Rh (JWST). The work in this dissertation will be continued

and complemented by postdoctoral research addressing these topics, and each will be briefly

discussed.

5.2.1. Revealing Spatial Interrelationships amongVolatiles. Differentiating par-

ent species from products is critical for inferring nucleus composition from detected

volatiles. Notably, the coma distributions of several common molecules (recent exam-

ples include H2CO and HNC in comet ISON; Cordiner et al. (2014)) are inconsistent with

release by direct sublimation alone, suggesting the presence of unidentified parents (Cot-

tin and Fray, 2008). Rosetta detected nonvolatile organic macromolecular materials on

the surface of comet 67P (Capaccioni et al., 2015), which may be the parent sources for

some of these distributed species. Other molecules, such as H2CO, have been suggested to

originate form thermal degradation of polymers in some cases (Cordiner et al., 2014; Fray

et al., 2006). However, much work remains to firmly understand the sources of many coma

volatiles, including important prebiotic molecules.

These questions can be addressed by spatial-spectral studies with long-slit, near-

infrared spectrographs such as iSHELL (examples of such studies are shown in this work)

and with radio facilities such as ALMA. With its high angular resolution, ALMA has

the unique ability to generate three-dimensional spatial maps of gases within ∼300 to

several thousand km of the nucleus, and the high spatial resolution afforded by long-slit

IR measurements enables studying how species are released from the nucleus and possible

additional sources through their derived column densities along the slit. Comparing the

sources for different species is essential for understanding the origin of each volatile and

whether they are associated with nucleus sources (and hence can be related to formation

conditions). By understanding the origin of coma volatiles and how volatiles might be

associated or segregated in nucleus ices, future work with instruments such as iSHELL and

ALMA will address a fundamental question in post-Rosetta cometary science: How are

comet ices put together? (A’Hearn, 2017).
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5.2.2. Testing for Isotopic Fractionation and Complex Organics in Comets.

Decrypting the clues of solar system formation that are imprinted in the ices of cometary

nuclei requires an understanding of the formation circumstances and history of cometary

material. Testing isotopic ratios in coma volatiles provides a powerful tool for unraveling

this history, as isotopic fractionation is sensitive to the prevailing conditions during their

assembly, including temperature and processing. Isotopic ratios measured in comets (e.g.,

Bockelée-Morvan et al. (2015)) include D/H, 32S/34S, 12C/13C, 14N/15N, and 16O/18O. A

significant deviation of these ratios in comets from solar values could indicate that their

material experienced isotopic fractionating during solar/planet formation, or even earlier.

For instance, excesses of heavy hydrogen and nitrogen are favored in very low temperature

environments, as evidenced by deuterium enrichment in the interstellar medium and heavy

nitrogen enrichment toward dark cloud cores (Bockelée-Morvan et al., 2015; Milam et al.,

2015). Significantly, cometary isotopic ratios show signs of such fractionation in D and
15N, suggesting a heritage from a very low temperature environment, perhaps interstellar.

However, isotopic ratios of carbon, sulfur, and oxygen in comets are generally consistent

with solar values (Bockelée-Morvan et al., 2015), leaving the question unresolved and

requiring a larger sample of isotopic fractionation measurements to determine whether

cometary material is consistent with an interstellar origin, nebular material, or both.

Isotopic fractionation studies can be complemented by measuring the abundances

of complex organic molecules (COMs) in comets. COMs, such as glycoaldehyde and

formamide, have been detected in comets and can be formed via grain-surface reactions

in cold prestellar cores, or later in the protoplanetary disk; thus, the abundances of COMs

in comets can provide insights into whether their nuclei have incorporated material from

the protosolar nebula or even earlier by comparison with their abundances in interstellar

sources and with chemical models of dark clouds and protoplanetary disks (Biver, 2015).

Future work will test isotopic fractionation and for the presence of complex organics in

comets by targeting their rotational transitions with facilities such as ALMA.
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5.2.3. Probing Coma Composition at Large Rh. The James Webb Space Tele-

scope (JWST) is scheduled to become operational in 2021, and JWST-based comet obser-

vations will form a portion of the author’s postdoctoral research. JWST will provide highly

complementary results to ground-based observations of comets. JWST will be particularly

powerful for observing comets at Rh > 3 AU and at excellent spatial resolution (Kelley et al.,

2016), enabling studies of coma volatile composition and spatial distributions at heliocentric

distances that are often out of reach to ground-based IR and sub-mm observatories. JWST

will also enable comprehensive studies of CO2 in comets, a primary driver for cometary

activity along with H2O and CO, but which is unobservable from the ground and therefore

not well understood (Kelley et al. (2016) and refs. therein). JWST will enable simultaneous

or contemporaneous studies of the abundances and spatial distributions of all three species

in comets over a range of Rh, providing highly complementary results to the ground-based

spatial studies conducted at smaller Rh and dramatically improving the understanding of

cometary behavior over all portions of an orbit.

5.3. FINAL REMARKS

Cometary science in the era after the Deep Impact, EPOXI, and Rosetta missions

can be best described as searching for how (or whether) the properties and behaviors of

comets change with time. The results of these missions have led to fundamental questions

(posed by A’Hearn (2017)) regarding the nature of comets: To what degree do comets retain

cosmogonic signatures in their nuclei? How are comets ices put together? How do comets

change with time? Are the behaviors seen by these missions exceptional or common? The

results reported in this work seek to address these questions by characterizing the primary

volatile composition of three comets, and using these results to decode the history of volatile

matter in the early solar system.
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OVERVIEW

This appendix serves to a provide a more detailed description of the observational

techniques and data reduction procedures applied in cometary near-infrared spectroscopy in

this work as outlined in Section 1.6. This appendix will also serve to familiarize the reader

with the NIRSPEC and iSHELL spectrographs used for data collection. As previously

mentioned, these observational techniques and reduction algorithms have been rigorously

tested and are documented in the refereed literature (see Section 1.6 for citations). Rather

than a comprehensive examination, this appendix will focus on the aspects most pertinent to

the data in this work, notably the recent upgrades made to the algorithms to allow processing

of iSHELL frames.

OBSERVATIONAL TECHNIQUES

The observational techniques used to gather near-infrared spectroscopic data for

this work are commonly used and well-known in astronomy. Exposures were acquired with

state-of-the-art near-infrared spectrographs mounted on large telescopes at professional

observatories: NIRSPEC at the 10 m W. M. Keck Observatory and iSHELL at the 3 m

NASA Infrared Telescope Facility, both on Maunakea, HI. In all cases, exposures were

acquired following the sequence “A1, B1, B2, A2” and combined for analysis as “A1-B1-

B2+A2”. Figure A.1 illustrates what “A” and “B” frames correspond to in terms of the

instrument and target object.

The majority of the data in this work were gathered using “on-chip” nodding, in

which the A and B beam positions are placed symmetrically about the midpoint of the slit

and separated by half its length. In this procedure, the comet is first placed in the “A”

position and an exposure (A1) is taken. The telescope then performs a nod, placing the

comet in the “B” position along the slit and taking a second exposure (B1). A second

B-frame exposure is taken (B2) and the telescope is then nodded back to the A position for
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B-Frame
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comet+sky
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comet

-1×comet

Figure A.1. Order 23 in the KL1 setting of the NIRSPEC spectrograph, showing an “A”
frame, a “B” frame, and their difference. The slanted, white horizontal streak in the A and B
frames is the comet signal. The vertical bands superimposed on this signal are sky emission
lines. Note that these sky lines have been canceled out in the A-B difference frame, leaving
only comet signal at the A-position and its negative at the B-position.

the final A frame (A2). In an “A” frame, the slit contains signal from the comet as well as

thermal background and “sky” emissions (lines and continuum) at the A-position along the

slit, while only containing thermal background and sky emissions at the B-position. In the

following “B” frame, the slit contains only thermal background and sky emissions at the

A-position, but now contains comet signal, thermal background, and sky emissions at the

B-position. The same is true for the second B and A exposures. Combining these frames

as “A1-B1-B2+A2” cancels emissions from the thermal background, instrumental biases,

and sky emissions to second order in air mass, resulting in a frame which contains purely

comet signal at the A-position and its negative at the B-position.

A comparable procedure is used for “off-chip” nodding. Off-chip nodding was

necessary for iSHELL observations of comet 21P/Giacobini-Zinner in September 2018,

when a malfunction of the iSHELL dekker caused the slit length to be fixed at 5′′. The
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iSHELL slit length can be interchanged during normal operations, with available slit lengths

of 5′′, 15′′, and 24′′. With the exception of the September 2018 21P/Giacobini-Zinner

observations, all iSHELL data presented in this work were acquired with the 15′′ long

slit. Owing to the sole availability of the 5′′ during the September 2018 observations,

observations were performed with off-chip nodding, wherein the comet was placed at the

midpoint of the slit for “A” frames and the telescope was nodded 20′′ perpendicular to the

slit for “B” frames. Exposures were combined in the same manner as on-chip nodding,

but the total time on-source is reduced a factor of two for off-chip nodding (owing to the

B frames containing only “sky” signal). Additionally, the spatial extent of measurements

along the slit was reduced by a third.

Dark and flat field frames were also taken for every comet set acquired with a

particular instrument setting. The dark frames correct for high dark current pixels (the

response of the chip to an absence of illumination) and the flat field frames correct for the

response of the chip to a uniform illumination source (in this case, a flat lamp inside of each

spectrograph). In addition, “standard star” sets are taken for each comet setting to achieve

flux calibration: converting instrument counts (ADU) to flux density (W/m2/cm-1) through

a derived calibration factor, Γ (W/m2/cm-1/ADU/s). Standard stars are stellar sources with

well-constrained magnitudes in the wavelength region of interest (L, L’, andM for this work)

that are available at similar air mass and right ascension (preferably within 2h) to that of the

comet. Darks and flats are taken for each standard star setting as well. A typical observing

sequence may be (using iSHELL settings L1 and Lp1): L1 comet, L1 comet darks, L1

comet flats, L1 standard star, L1 star darks, L1 star flats, Lp1 standard star, Lp1 star darks,

Lp1 star flats, Lp1 comet, Lp1 comet darks, Lp1 comet flats.
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Figure A.2. The KL1 setting of NIRSPEC, including the frequency range of each echelle
order, showing its piece-wise continuous spectral coverage.

THE NIRSPEC AND ISHELL SPECTROGRAPHS

To familiarize the reader with the spectrographs used in this work, a brief description

of each will be given. NIRSPEC is a high-resolution (λ/∆λ ∼ 20,000), cross-dispersed,

piece-wise continuous, near-infrared echelle spectrograph with a 1024x1024 pixel array.

Figure A.2 shows the full KL1 setting (Orders 22-27) taken with NIRSPEC, along with the

frequency range of each echelle order. In four instrument settings, NIRSPEC allows many

transitions of all molecules targeted in this work to be sampled simultaneously with either

H2O or its proxy, OH*, significantly reducing systematic uncertainty in derived mixing

ratios.

The other spectrograph employed in thiswork, iSHELL, is very similar toNIRSPEC;

however, it features higher resolving power (λ/∆λ ∼ 40,000), a larger (2048x2048) array,

and has nearly continuous wavelength coverage in the L, L’, and M bands (i.e., between
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roughly 2.8 µm and 5 µm). Additionally, iSHELL is capable of daytime observations with

near-infrared active guiding (in fact, IRTF is currently the only near-infrared observatory

to offer daytime observing). Combined with its high observing efficiency (even at M

band), the capabilities of iSHELL have dramatically increased the number of observable

comets, and enabled serial, long on-source integrations of targets. These observations

are enabling searches for and improved understanding of novel behaviors and properties of

comets, including coma compositional variability, heterogeneous outgassing, and detections

of underrepresented species in cometary studies. Figure A.3 shows the full LP1 setting of

iSHELL, including its “bowed” orders, along with the frequency range of each order. The

large spectral grasp of iSHELL allows for up to dozens of strong lines of targeted species

to be sampled within a single setting. Since each echelle order within a setting is captured

simultaneously, emissions from a particular molecule in multiple orders can be coadded

and analyzed together, significantly improving signal-to-noise, particularly for weak (e.g.,

C2H2, NH3) and underrepresented species.

DATA REDUCTION AND FLUX CALIBRATION

1. Initial Processing. The iSHELL spectrograph first became available for use in

late 2016. A considerable, research group-wide collaborative effort was undertaken to

upgrade the data reduction algorithms used in this work to be able to process iSHELL

frames. The routines are otherwise identical to those used for NIRSPEC data with three

important exceptions: echelle order cropping, spatial resampling (straightening), and noise

calculations. Aspects of the reduction specific to iSHELL data will be highlighted.

As shown in Figure A.2 and Figure A.3, each frame contains an image of the entire

NIRSPEC or iSHELL array and contains many individual echelle orders. Each order

is cropped and processed individually. After combining A and B frames as described

above, each difference pair is flat-fielded (the flats themselves are dark subtracted). The

reduction algorithms were originally written for cropping quadrilateral sections (in the case
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Figure A.3. The LP1 setting of iSHELL, including the frequency range of each echelle
order, showing its nearly continuous spectral coverage within a setting.

of NIRSPEC), and were modified to accommodate cropping parabolic sections (in the case

of iSHELL) to isolate orders based on user-defined inputs for the edges of each. After

cropping, each order is cleaned of cosmic ray hits and “hot” (high dark current) pixels

using a “sigma cleaning” algorithm, which flags pixels exceeding a user-defined tolerance

threshold and cleans them using a near-neighbor averaging procedure.

At this point, the cropped order is still curved (for iSHELL) or slanted (for NIR-

SPEC), and the spectral lines are tilted at an angle (this is clearly visible for the sky lines in

Figure A.2) and needs to be straightened such that each row corresponds to a unique spatial

position along the slit and each column to a unique wavelength. Spatial resampling (spatial

straightening) is achieved by fitting a Gaussian to the peak signal of the A and B beams in

each column. A polynomial is then fit to these peaks (one polynomial for the peak row of
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the A beam in each column, and another for the peak row of the B beam in each column)

and is used to remove the curvature. For comets in which continuum is not visible in an

A–B difference frame, the spatial straightening solution from the same setting and order of

the standard star is used. The star and comet orders fall on the array in an identical manner,

and the solution from the star is sufficient to properly remove spatial curvature from comet

orders.

For NIRSPEC, and initially for iSHELL, spatial resampling was performed with a

second order polynomial fit. This was the case for observations of C/2012K1 (PanSTARRS)

and 2P/Encke presented in this work. As more and more iSHELL data sets were acquired,

including very high signal-to-noise standard star sets, it became apparent that spatial re-

sampling with a third order polynomial more completely removed the curvature from the

spatial dimension of iSHELL frames, and this was applied to iSHELL observations of

21P/Giacobini-Zinner. It is important to note that spatial resampling with a second order

polynomial has been verified to completely straighten NIRSPEC frames. Similarly, com-

parisons of second order and third order spatial resampling were performed on 2P/Encke

iSHELL data in advance of its publication. Results derived with both methods were con-

sistent for 2P/Encke within uncertainty, and the results of the original second order spatial

resampling were published.

Once each order has been straightened in the spatial dimension, it must be straight-

ened in the spectral direction such that each column corresponds to a unique wavelength.

The following approximation:

ν(x) = νcen + disp1 |x − x0 | + disp2(x − x0)
2 (A.1)

relates column pixel number (x) and wavenumber (ν), where νcen is the central wavenumber

of the order and disp1 and disp2 are the first and second order dispersion terms. Dispersion

coefficients are calculated for the left and right sides of the order separately, for a total of
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five spectral resampling parameters. These parameters are adjusted by comparing sky lines

in each order to a telluric radiance model. Now that the orders are straightened in both

the spatial and spectral dimensions, wavelength calibration is achieved by again comparing

sky lines to a telluric radiance model. Column burdens for telluric absorbers are calculated

by fitting a telluric absorption model to observed telluric line intensities and widths. The

telluric radiance and absorption models were calculated with the Line-by-Line-Radiative

TransferModel (LBLRTM, Clough et al. (2005); Villanueva et al. (2011b)) for observations

of C/2012 K1 (PanSTARRS) and 2P/Encke, and with the Planetary Spectrum Generator

(following Villanueva et al. (2015)) for observations of 21P/Giacobini-Zinner. Finally,

each A–B pair is registered by identifying the peak position of continuum emission in the

A and B positions in order to correct for drift of the comet along the slit during an AB

sequence. Spectra are extracted from the processed frames by summing signal over 9 rows

(for NIRSPEC) or 15 rows (for iSHELL), five (seven) rows to each side of the nucleus,

defined as the peak of dust emission in a given echelle order.

2. A Note Regarding Noise in iSHELL Frames. In the case of iSHELL, reduced

quantum efficiency near the edges of the chip result in lower S/N at the left and right

ends of each echelle order. At present, a precise formalism for modeling this noise is

unavailable. The data reduction algorithms therefore employ an algorithm for modeling

noise based on NIRSPEC, as well as a routine to measure actual noise in each iSHELL

frame. Careful analysis has shown that for high S/N data, such as 2P/Encke presented in

this work, the differences between modeled and measured noise in iSHELL spectra are

negligibly small. For data that push the limits of iSHELL’s sensitivity, such as the analysis

of CH4 in comet 21P/Giacobini-Zinner, these differences are more pronounced and cannot

be ignored. Therefore, the analysis of 21P/Giacobini-Zinner iSHELL frameswas performed

using measured noise in each frame in place of modeled noise.
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3. Calculation of Nucleocentric ProductionRates. Nucleocentric molecular pro-

duction rates (QNC) were calculated for each line using:

QNC =
4π∆2Fi

giτ(hcν) f (x)
(A.2)

where ∆ is the geocentric distance in meters, Fi is the flux from the ith line incident at the

top of the terrestrial atmosphere (W m-2), gi is the line fluorescence efficiency (g-factor) at

Rh = 1 AU (photons s-1 molecule-1), hcν is the energy (J) of a photon with wavenumber

ν (cm-1), τ is the photodissociation time of a molecule at Rh = 1 AU (Huebner et al.,

1992), and f(x) is the fraction of molecules in the coma along the column described by the

beam (of size 0.43′′ × 1.8′′ for NIRSPEC extracts, and of size 0.75′′ × 2.5′′ for iSHELL

extracts), assuming outgassing purely from the nucleus and uniform outflow. An expression

for calculating f (x) for square pixels is given in Hoban et al. (1991). A gas outflow speed

of vgas = 800 · R−0.5
h m s-1 was assumed based on velocity-resolved measurements of comets

at radio wavelengths (e.g., Biver et al. (2006); Cordiner et al. (2014)).

4. Q-curves, Growth Factors, and Global Production Rates. Due to the use of

a narrow slit (0.75′′ for iSHELL, 0.432′′ for NIRSPEC) slit, atmospheric seeing inevitably

reduces flux along lines of sight passing close to the nucleus, thereby depressing the

calculated QNC. The Q-curve formalism, first developed for analysis of OCS in C/1995 O1

(Hale-Bopp) (Dello Russo et al., 1998), is used to correct for these effects. To generate

Q-curves, production rates are calculated for each line at progressive intervals along the

slit using equation A.2, summing up the flux contained in each interval and accounting

for f (x) (Figure A.4). Once slit positions have been reached that are sufficiently far away

from the nucleus, seeing no longer dominates the measured flux and calculated production

rates reach a “terminal” (or total) value, Qtotal, which is constant within uncertainty. The

growth factor (GF) is defined as GF = Qtotal/QNC , and relates the nucleocentric production
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Figure A.4. A. Emission spatial profile of H2O (black) and dust (red) in comet 2P/Encke
on UT 2017 March 22 (Roth et al., 2018). The “lower” side of the slit is shaded in green,
and the “upper” side of the slit is shaded in red. B. Q-curve for the H2O emission shown
in panel A. The green diamonds represent the production rates measured from summed
flux (corrected for f(x)) at each slit position from the “lower” side of the slit, red squares
represent the same for positions on the “upper” side of the slit, and black diamonds are the
average of the red and green measurements. The nucleocentric (QNC) and terminal (Qtotal)
production rates are indicated, as well as the identification of the growth factor (GF) as their
ratio.

rate calculated for each line to the global (or total) production rate. The production rates

reported in this work are weighted averages of the global production rates calculated for

each observed line of a given species.

5. Determination of Rotational Temperature (Trot). Rotational temperatures

were determined using multiple complementary methods as detailed in Bonev (2005),

Bonev et al. (2008a), DiSanti et al. (2006), and Villanueva et al. (2008). For the purposes

of this work, these includes correlation and excitation analyses. Each will be described in

turn.

5.1. Correlation analysis. Correlation analysis is useful for placing initial con-

straints on T rot and for examining pure goodness-of-fit between model and data. In cor-

relation analysis, synthetic fluorescence emission models are generated over a range of

temperatures. The correlation coefficient (R) measuring the goodness-of-fit for the model

at each temperature is recorded and plotted, making a “correllogram” (Figure A.5). The

optimum temperature is found at the maximum point of the correllogram (the point of
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Figure A.5. Correllogram showing goodness-of-fit to H2O emissions in 2P/Encke on UT
2017 March 25, with an optimum found at T rot = 62 K. Note that the lower end of the
temperature range is more well-constrained than the upper end.

maximum correlation). Figure A.5 shows a correllogram generated by fitting models of

non-resonant fluorescence models for H2O to dozens of H2O lines near 2.9 µm in 2P/Encke

onUT 2017March 25. The optimum temperature is found to be 62K based on themaximum

in the correllogram.
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The “sharpness” of the correllogram can also provide information regarding how

well correlation analysis can constrain T rot in a particular data set, both overall and with

respect to low vs. high temperatures. A flat correllogram indicates that the data are fit by

the models at each temperature with essentially the same goodness-of-fit, in which case

correlation analysis is not very diagnostic of T rot. In contrast, a sharp correllogram indicates

that a certain temperature (or range of temperatures) clearly fits the data better and is more

diagnostic. Furthermore, the correllogram can provide insight into how well the different

rotational levels are sampled for a particular set of lines. In the case of Figure A.5, the

lower side of the correllogram is much sharper than the upper side, indicating that a larger

number of lines with relatively low rotational energies in the ground vibrational state are

being sampled compared to lines with relatively high rotational energies.

5.2. Excitation (“zero-slope”) analysis. Once a preliminary range of probable T rot

has been identified through correlation analysis, excitation analysis (DelloRusso et al., 2004)

is used to identify the best-fit rotational temperature. In contrast to correlation analysis,

which is mainly sensitive to how well a model fits the data, excitation analysis is sensitive

to the range of rotational energies in the ground vibrational state that are sampled in a given

spectrum. Excitation analysis takes advantage of the fact that for each line, Qi ∝ Fi/gi ∝ Ni,

where Qi is the production rate of each line, Fi is the flux of each line measured at the top

of the terrestrial atmosphere, gi is the g-factor (intensity) of each line, and Ni is the column

density of molecules. For each line, Fi is a measured quantity and gi = gi(Trot) is a modeled

quantity that is dependent on T rot. When a sufficiently large spread in rotational energies is

sampled, these quantities can be manipulated in the following fashion.

The inner coma being sampled by near-infrared measurements can be assumed to be

in local thermodynamic equilibrium (Bonev, 2005), with sufficient density for its molecules

to be thermalized by collisions; therefore, the population of rotational levels in the ground

vibrational state is governed by a Boltzmann distribution characterized by a temperature,

T rot. For each line, the quantity Fi/gi(Trot) (or equivalently,Ni) is plotted versus its rotational
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Figure A.6. Excitation analysis of H2O in comet 2P/Encke at T rot = 45 K. Note the positive
slope of the best-fit line, indicating that the best-fit rotational temperature is higher than 45
K.

energy in the upper vibrational state (Eup) – this is referred to as an “excitation diagram”.

Figure A.6 shows an excitation diagram for dozens of H2O lines near 2.9 µm in 2P/Encke

on UT 2017 March 25 at T rot = 45 K, along with the best-fit trend line.

It is clear that a wide range of upper state rotational energies is sampled, as well

as that the slope of the best-fit line at T rot = 45 K is positive. Recall for what follows that

Ni ∝ Fi/gi. The measured flux of each line is indicative of the population in their upper state
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Figure A.7. Excitation analysis of H2O in comet 2P/Encke at T rot = 97 K. Note the negative
slope of the best-fit line, indicating that the best-fit rotational temperature is lower than 97
K.

rotational energy levels. The upper state rotational energies of each line are not dependent on

T rot. However, the relative populations of the upper state rotational energies are dependent

on the rotational populations in the ground vibrational state, which are directly dependent

on T rot (Bonev, 2005).

When the modeled T rot is too low, gi(Trot) will be overestimated for lower-energy

lines and underestimated for higher-energy lines, leading to a positive slope in the best-

fit line in a plot of Fi/gi vs. Eup (Figure A.6). Conversely, when the modeled T rot
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Figure A.8. Excitation analysis of H2O in comet 2P/Encke at T rot = 63 K. Note the zero
slope of the best-fit line, indicating that the best-fit rotational temperature is consistent with
63 K.

is too high, gi(Trot) will be underestimated for lower-energy lines and overestimated for

higher-energy lines, resulting in a negative slope to the best-fit line for Fi/gi vs. Eup

(Figure A.7). However, when the rotational temperature that accurately describes the

Boltzmann distribution governing the lower-state rotational population levels is chosen,
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Fi/gi will be independent of upper-state rotational energy: each line will give the same

Qi ∝ Fi/gi ∝ Ni, and the slope of the best-fit line for Fi/gi vs. Eup will be zero within

uncertainty (Figure A.8).

6. Uncertainties inmeasurements. It is important to provide a detailed accounting

of the uncertainties associated with each of the measured or retrieved quantities reported in

this work. These quantities include molecular production rates (determined as the weighted

mean of individual production rates for each measured line of a given species), rotational

temperatures (determined as the temperature which produces a zero-slope best-fit line when

relating F/g vs. Eup for each line of a given species), and growth factors. The reduction

algorithms employed in this work calculate two sources of uncertainty for each quantity:

stochastic error and standard error.

The stochastic error is a measure of the signal-to-noise ratio of each of the lines

used to calculate the aforementioned quantities. For all but the brightest comets, the signal

from emission lines in the coma is weaker than the background signal introduced by the sky,

including continuum and emission lines from telluric species – hence the dominant source

of noise in the measured flux of each cometary line originates from thermal background

noise (Bonev, 2005). The standard error is a measure of how quantities derived from the

lines (e.g., Qi, Fi/gi) are spread about the weighted mean or about the best-fit line. In

contrast to the stochastic error, the standard error is indicative of uncertainties introduced

by modeled quantities (such as the g-factors): for instance, the flux of a C2H6 line may

be measured with very high signal-to-noise, yet the production rate derived from the line

may be in poor agreement with those derived from other C2H6 lines if its g-factor is poorly

modeled.

In the case of global production rates and growth factors, these uncertainties are the

stochastic and standard errors in the weighted means used to calculate each quantity. In the

case of rotational temperatures derived with excitation analysis, the uncertainties are the

stochastic and standard errors in a linear best fit. It is important to note that in most cases,
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the standard error is found to dominate over the stochastic error when using the instruments,

models, and reduction algorithms employed in this work. The following will examine how

these quantities are incorporated into:

1. Uncertainties in molecular production rates introduced by uncertainties in rotational

temperatures, uncertainties in growth factors, uncertainties in the telluric absorption

model, and uncertainties in flux calibration.

2. Uncertainties in the abundance ratios, including for molecules whose transitions are

in separate instrumental settings (i.e., abundance ratios between molecules that are

not observed simultaneously).

6.1. Uncertainties in molecular production rates. The molecular production

rates reported in this work are the weighted averages of the production rates calculated

for each line of an individual species. The uncertainty associated with production rates for

individual lines, Qi, is the stochastic error. When calculating the overall production rate us-

ing the weighted average of these quantities, both the stochastic error and the standard error

of the average are calculated, and the larger of the two is taken to be the overall uncertainty.

However, calculating this average production rate requires additional quantities, including

the rotational temperature, the transmittance predicted by the telluric absorption model at

the frequency of each line, the growth factor of each molecule, and the flux calibration

determined for each spectral order.

In the case of the rotational temperature, uncertainties can be introduced in the

slope of the best-fit line of F/g vs. Eup by uncertainties in the measured flux of each line,

whether due to low signal-to-noise in the measured flux, uncertainties in modeling of the

transmittance function (and hence the correction for telluric absorption) at the frequency

of the line, or uncertainties in the applied flux calibration. Additional uncertainty can be

introduced by the modeled g-factor, or the predicted intensity of the lines. Each of these

will contribute to a greater spread in the derived F/g of individual lines about the best-fit
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line and are accounted for by the standard error calculation. In general, the possible spread

in production rates due to uncertainty in rotational temperature is found to be well within

the uncertainty limits given by the standard error of the weighted average production rates

reported in this work.

In the calculation of the growth factor, uncertainties are introduced by the spread

of the production rates calculated at successive intervals along the slit about the “terminal”

production rate value. The production rates at each position along the slit inside the terminal

region are incorporated into a weighted average, and the standard and stochastic error are

calculated, with the greater being taken as the overall uncertainty. Errors in the growth

factor, especially when the growth factor of H2O is assumed for weaker trace species, are

systematic: while they introduce uncertainties in the production rates, they do not affect the

uncertainties in calculated mixing ratios.

Finally, uncertainty in flux calibration can introduce uncertainties in the derived

production rates. Similar to the growth factor, these uncertainties are systematic within a

given instrumental setting and will affect the production rates but not the derived mixing

ratios. The algorithms employed in this work incorporate a 10% uncertainty due to flux

calibration in the reported measurements.

6.2. Uncertainties in abundance ratios. Once the production rates have been

calculated, the final task is to derive mixing ratios, or relative abundances. In this case,

the standard errors of the weighted average production rates of each species are added in

quadrature, which gives the uncertainty in their abundance ratio. However, for molecules

whose transitions are not observed simultaneously (e.g., if the mixing ratio CH4/H2O was

calculated using Q(CH4) from the iSHELL Lp1 setting and Q(H2O) from the M2 setting),

an additional source of uncertainty is introduced due to the variable nature of the coma and

the considerable amount of time required to take measurements in two separate settings (on

the order of several hours). The uncertainty introduced in such measurements is estimated

to be 10%, which is added to the uncertainty in the calculated mixing ratios.



APPENDIX B

COPYRIGHT AGREEMENTS



106

COPYRIGHT AGREEMENTS FORWORKS PUBLISHED

This dissertation include materials from works published or submitted for publi-

cation in the American Astronomical Society’s The Astronomical Journal. These include

Section 2 (Roth et al., 2017), Section 3 (Roth et al., 2018) and Section 4 (Roth et al.,

2019). Included for reference are the copyright agreements signed by Roth and coauthors

specifying the rights granted to them, including the right to reproduce all or part of their

articles in their own future works, such as this dissertation.



107
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